A276076 Factorial base exp-function: digits in factorial base representation of n become the exponents of successive prime factors whose product a(n) is.
1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450, 3675, 7350, 11025, 22050, 6125, 12250, 18375, 36750, 55125, 110250, 343
Offset: 0
Examples
n A007623 polynomial encoded as a(n) ------------------------------------------------------- 0 0 0-polynomial (empty product) = 1 1 1 1*x^0 prime(1)^1 = 2 2 10 1*x^1 prime(2)^1 = 3 3 11 1*x^1 + 1*x^0 prime(2) * prime(1) = 6 4 20 2*x^1 prime(2)^2 = 9 5 21 2*x^1 + 1*x^0 prime(2)^2 * prime(1) = 18 6 100 1*x^2 prime(3)^1 = 5 7 101 1*x^2 + 1*x^0 prime(3) * prime(1) = 10 and: 23 321 3*x^2 + 2*x + 1 prime(3)^3 * prime(2)^2 * prime(1) = 5^3 * 3^2 * 2 = 2250.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..5040
- Indranil Ghosh, Python program for computing this sequence.
- Index entries for sequences related to factorial base representation.
Crossrefs
Cf. A276075 (a left inverse).
Cf. A276078 (same terms in ascending order).
Programs
-
Mathematica
a[n_] := Module[{k = n, m = 2, r, p = 2, q = 1}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, q *= p^r; p = NextPrime[p]; m++]; q]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)
Formula
Other identities.
For all n >= 0:
A276075(a(n)) = n.
For all n >= 1:
From Antti Karttunen, Apr 18 2022: (Start)
(End)
lambda(a(n)) = A262725(n+1), where lambda is Liouville's function, A008836. - Antti Karttunen and Peter Munn, Aug 09 2024
Extensions
Name changed by Antti Karttunen, Apr 18 2022
Comments