A276077 Number of distinct prime factors p of n such that p^(1+A000720(p)) is a divisor of n, where A000720(p) gives the index of prime p, 1 for 2, 2 for 3, 3 for 5, and so on.
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1
Examples
For n = 2 (= prime(1)), 2 is not divisible by 2^(1+1), thus a(2) = 0. For n = 3 (= prime(3)), 3 is not divisible by 3^(2+1), thus a(3) = 0. For n = 4 (= prime(1)^2), 4 is divisible by 2^(1+1), and there are no other prime factors apart from 2, thus a(4) = 1. For n = 108 = 2^2 * 3^3, it is divisible both by 2^(1+1) and 3^(2+1), thus a(108) = 2. For n = 625 = prime(3)^4, it is divisible by 5^(3+1), thus a(625) = 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[PrimePi[p] < e, 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 30 2023 *)
-
PARI
a(n) = {my(f = factor(n)); sum(i = 1, #f~, primepi(f[i,1]) < f[i,2]);} \\ Amiram Eldar, Sep 30 2023
-
Python
from sympy import primepi, isprime, primefactors, factorint def a028234(n): f=factorint(n) return 1 if n==1 else n//(min(f)**f[min(f)]) def a067029(n): f=factorint(n) return 0 if n==1 else f[min(f)] def a049084(n): return primepi(n)*(isprime(n)) def a055396(n): return 0 if n==1 else a049084(min(primefactors(n))) def a(n): if n==1: return 0 val = a(a028234(n)) if a067029(n) > a055396(n): val += 1 return val print([a(n) for n in range(1, 201)]) # Indranil Ghosh, Jun 21 2017
-
Scheme
(define (A276077 n) (if (= 1 n) 0 (+ (A276077 (A028234 n)) (if (> (A067029 n) (A055396 n)) 1 0))))
Formula
This formula uses Iverson bracket, which gives 1 as its value if the condition given inside [ ] is true and 0 otherwise:
Other identities. For all n >= 1:
a(A276076(n)) = 0.
From Amiram Eldar, Sep 30 2023: (Start)
Additive with a(p^e) = 1 if primepi(p) < e, and 0 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/prime(k)^(k+1) = 0.2886971166123417096098... . (End)