A276079 Numbers n such that prime(k)^(k+1) divides n for some k.
4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 243, 244, 248, 252, 256, 260, 264, 268, 270, 272
Offset: 1
Keywords
Examples
625 = 5*5*5*5 = prime(3)^4 so it is divisible by prime(3)^(3+1), and thus 625 is included in the sequence.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..5000
Crossrefs
Programs
-
Python
from sympy import primepi, isprime, primefactors, factorint def a028234(n): f=factorint(n) minf = min(f) return 1 if n==1 else n//(minf**f[minf]) def a067029(n): f=factorint(n) return 0 if n==1 else f[min(f)] def a049084(n): return primepi(n) if isprime(n) else 0 def a055396(n): return 0 if n==1 else a049084(min(primefactors(n))) def a(n): return 0 if n==1 else a(a028234(n)) + (1 if a067029(n) > a055396(n) else 0) print([n for n in range(1, 301) if a(n)!=0]) # Indranil Ghosh, Jun 21 2017
Comments