cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276079 Numbers n such that prime(k)^(k+1) divides n for some k.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 243, 244, 248, 252, 256, 260, 264, 268, 270, 272
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

The asymptotic density of this sequence is 1 - Product_{i>=1} 1-prime(i)^(-1-i) = 0.2789766... - Amiram Eldar, Oct 21 2020

Examples

			625 = 5*5*5*5 = prime(3)^4 so it is divisible by prime(3)^(3+1), and thus 625 is included in the sequence.
		

Crossrefs

Positions of nonzeros in A276077.
Complement: A276078.
Cf. A000040, A000720, A008586 (a subsequence).
Differs from its subsequence A100716 for the first time at n=175, where a(175) = 625, while that value is missing from A100716.

Programs

  • Python
    from sympy import primepi, isprime, primefactors, factorint
    def a028234(n):
        f=factorint(n)
        minf = min(f)
        return 1 if n==1 else n//(minf**f[minf])
    def a067029(n):
        f=factorint(n)
        return 0 if n==1 else f[min(f)]
    def a049084(n): return primepi(n) if isprime(n) else 0
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def a(n): return 0 if n==1 else a(a028234(n)) + (1 if a067029(n) > a055396(n) else 0)
    print([n for n in range(1, 301) if a(n)!=0]) # Indranil Ghosh, Jun 21 2017