A276089 Factorial base representation of n is aerated (and then converted back to decimal): for n = sum_{i=1..} digit(i)*i! (with each digit(i) <= i), a(n) = sum_{i=1..} digit(i)*(2i-1)!.
0, 1, 6, 7, 12, 13, 120, 121, 126, 127, 132, 133, 240, 241, 246, 247, 252, 253, 360, 361, 366, 367, 372, 373, 5040, 5041, 5046, 5047, 5052, 5053, 5160, 5161, 5166, 5167, 5172, 5173, 5280, 5281, 5286, 5287, 5292, 5293, 5400, 5401, 5406, 5407, 5412, 5413, 10080, 10081, 10086, 10087, 10092, 10093, 10200, 10201, 10206, 10207, 10212, 10213, 10320, 10321
Offset: 0
Examples
n A007623(n) "aerated" and converted back to decimal gives a(n) 0 0 0 0 1 1 1 1 2 10 100 6 3 11 101 7 4 20 200 12 5 21 201 13 6 100 10000 120 7 101 10001 121 8 110 10100 126 9 111 10101 127 10 120 10200 132 11 121 10201 133 12 200 20000 240 13 201 20001 241 14 210 20100 246 15 211 20101 247 16 220 20200 252 17 221 20201 253 18 300 30000 360 19 301 30001 361 20 310 30100 366 21 311 30101 367 22 320 30200 372 23 321 30201 373
Links
Programs
-
Scheme
;; Standalone program: (define (A276089 n) (let loop ((n n) (s 0) (f 1) (i 2) (j 2)) (if (zero? n) s (let ((d (modulo n i))) (loop (/ (- n d) i) (+ s (* f d)) (* j (+ 1 j) f) (+ 1 i) (+ 2 j))))))
Comments