A276094 a(n) = n modulo A002110(A257993(n)), a(0) = 0.
0, 1, 2, 1, 4, 1, 6, 1, 2, 1, 4, 1, 12, 1, 2, 1, 4, 1, 18, 1, 2, 1, 4, 1, 24, 1, 2, 1, 4, 1, 30, 1, 2, 1, 4, 1, 6, 1, 2, 1, 4, 1, 12, 1, 2, 1, 4, 1, 18, 1, 2, 1, 4, 1, 24, 1, 2, 1, 4, 1, 60, 1, 2, 1, 4, 1, 6, 1, 2, 1, 4, 1, 12, 1, 2, 1, 4, 1, 18, 1, 2, 1, 4, 1, 24, 1, 2, 1, 4, 1, 90, 1, 2, 1, 4, 1, 6, 1, 2, 1, 4, 1, 12, 1, 2, 1, 4, 1, 18, 1
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..2310
Programs
-
Mathematica
{0}~Join~Table[k = 1; While[! CoprimeQ[Prime@ k, n], k++]; Mod[n, Product[Prime@ i, {i, k}]], {n, 79}] (* Michael De Vlieger, Jun 22 2017 *)
-
Python
from sympy import nextprime, primepi, primorial def a053669(n): p = 2 while True: if n%p: return p else: p=nextprime(p) def a257993(n): return primepi(a053669(n)) def a002110(n): return 1 if n<1 else primorial(n) def a(n): return 0 if n==0 else n%a002110(a257993(n)) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017