A276100 a(n) = (15*n)!*(n/2)!/((15*n/2)!*(5*n)!*(3*n)!).
1, 114688, 77636318760, 62505037015810048, 53837289804317953893960, 48066503353826060675410034688, 43880754270176401422739454033276880, 40671547154451909281150562260837340282880, 38113558705192522309151157825210540422513019720
Offset: 0
Links
- Carauleanu Marc, Table of n, a(n) for n = 0..111
- P. Bala, Some integer ratios of factorials
- F. Rodriguez-Villegas, Integral ratios of factorials and algebraic hypergeometric functions, arXiv:math/0701362 [math.NT], 2007.
Programs
-
Maple
A211417 := proc(n) (30*n)!*(n)!/((15*n)!(10*n)!(6*n)!); end proc: seq(simplify(A211417(1/2*n)), n = 0..10);
-
Mathematica
Table[(15 n)!*(n/2)!/((15 n/2)!*(5 n)!*(3 n)!), {n, 0, 8}] (* Michael De Vlieger, Aug 28 2016 *)
Formula
O.g.f.: A(x) = Hypergeom([29/30, 23/30, 19/30, 17/30, 13/30, 11/30, 7/30, 1/30,], [4/5, 3/5, 2/5, 1/5, 2/3, 1/3, 1/2], (2^14*3^9*5^5)*x^2) + 114688*x*Hypergeom([22/15, 19/15, 17/15, 16/15, 14/15, 13/15, 11/15, 8/15], [13/10, 11/10, 9/10, 7/10, 7/6, 5/6, 3/2], (2^14*3^9*5^5)*x^2).
a(n) ~ (2^14*3^9*5^5)^(n/2)/sqrt(30*Pi*n).
Comments