A276102 a(n) = (6*n)!*(n/5)!/((3*n)!*(2*n)!*(6*n/5)!).
1, 50, 8250, 1636250, 349456250, 77636318760, 17672894531250, 4089765214843750, 957711284472656250, 226280605806640625000, 53837289804317953893960, 12880759628253295898437500
Offset: 0
Links
- P. Bala, Some integer ratios of factorials
- F. Rodriguez-Villegas, Integral ratios of factorials and algebraic hypergeometric functions, arXiv:math/0701362 [math.NT], 2007.
Programs
-
Maple
A211417 := proc(n) (30*n)!*(n)!/((15*n)!(10*n)!(6*n)!); end proc: seq(simplify(A211417(1/5*n)), n = 0..10);
-
Mathematica
Table[(6*n)!*(n/5)!/((3*n)!*(2*n)!*(6*n/5)!) // FullSimplify, {n, 0, 11}] (* Jean-François Alcover, Nov 27 2017 *)
Formula
a(n) ~ (2^14*3^9*5^5)^(n/5)/sqrt(12*Pi*n).
Comments