A276108 Numbers expressible as perfect powers in a composite number of ways.
1, 65536, 43046721, 68719476736, 152587890625, 2821109907456, 33232930569601, 281474976710656, 10000000000000000, 45949729863572161, 150094635296999121, 184884258895036416, 665416609183179841, 2177953337809371136, 6568408355712890625, 18446744073709551616
Offset: 1
Keywords
Examples
65536 = 2^16 is a term because there are 4 corresponding ways that are 2^16, 4^8, 16^4, 256^2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Python
from sympy import mobius, integer_nthroot, isprime, divisor_count def A276108(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+sum(mobius(k)*(integer_nthroot(x,k)[0]-1+sum(integer_nthroot(x,i*k)[0]-1 for i in range(2,(x//k).bit_length()) if isprime(i) or isprime(divisor_count(i)-1))) for k in range(1,x.bit_length()))) return bisection(f,n,n) # Chai Wah Wu, Nov 25 2024
Extensions
New title from Charlie Neder, Mar 04 2019
a(5)-a(16) from Chai Wah Wu, Nov 25 2024
Comments