cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A280919 Precipices from the successive terraces, descending by the main diagonal of the pyramid described in A245092. Also first differences of A071562.

Original entry on oeis.org

1, 2, 2, 2, 1, 3, 3, 1, 2, 2, 4, 1, 3, 2, 2, 3, 1, 4, 2, 3, 3, 1, 1, 4, 2, 4, 3, 1, 2, 4, 2, 5, 3, 1, 3, 4, 2, 1, 5, 2, 1, 1, 4, 4, 2, 2, 5, 3, 1, 5, 2, 2, 2, 3, 5, 3, 1, 6, 3, 1, 2, 4, 2, 3, 3, 1, 1, 6, 4, 2, 5, 3, 2, 3, 1, 2, 2, 4, 4, 1, 1, 6, 4, 1, 3, 1, 3
Offset: 1

Views

Author

Omar E. Pol, Jan 10 2017

Keywords

Comments

Descending by the main diagonal of the pyramid, A071562 gives the levels where we can find a terrace.
The terraces at the k-th level of the pyramid are also the parts of the symmetric representation of sigma(k).
a(n) is the length of the n-th vertical line segment at the main diagonal of the pyramid.
a(n) is the precipice of A071562(n).
The structure of the stepped pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593.
The stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
Equals nonzero terms of A259179. - Omar E. Pol, Apr 17 2018

Crossrefs

For more information about the precipices see A276112, A277437, A280223 and A280295.

Programs

Formula

a(n) = A280223(A071562(n)).

Extensions

More terms from Michael De Vlieger, Jan 13 2017

A277437 Square array read by antidiagonals upwards in which T(n,k) is the n-th number j such that, descending by the main diagonal of the pyramid described in A245092, the height difference between the level j (starting from the top) and the level of the next terrace is equal to k.

Original entry on oeis.org

1, 3, 2, 5, 4, 9, 7, 6, 12, 20, 8, 10, 21, 36, 72, 11, 13, 25, 50, 91, 144, 14, 16, 32, 56, 112
Offset: 1

Views

Author

Omar E. Pol, Dec 29 2016

Keywords

Comments

This is a permutation of the natural numbers.
Column k lists the numbers with precipice k. For more information about the precipices see A280223 and A280295.
The structure of the stepped pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593.
The terraces at the m-th level of the pyramid are also the parts of the symmetric representation of sigma(m), m >= 1.
The stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
If a number m is in the column k and k > 1 then m + 1 is the column k - 1.
The largest Dyck path of the symmetric representations of next k - 1 positive integers greater than T(n,k) shares the middle point of the largest Dyck path of the symmetric representation of sigma(T(n,k)). For more information see A237593.

Examples

			The corner of the square array begins:
   1,  2,  9, 20, 72, 144,
   3,  4, 12, 36, 91,
   5,  6, 21, 50,
   7, 10, 25,
   8, 13,
  11,
  ...
T(1,6) = 144 because it is the smallest number with precipice 6.
		

Crossrefs

Formula

T(n,1) = A071562(n+1) - 1.

Extensions

a(20)-a(26) from Omar E. Pol, Jan 02 2017

A280295 Smallest number with precipice n. Descending by the main diagonal of the pyramid described in A245092, the height difference between the level a(n) (starting from the top) and the level of the next terrace is equal to n.

Original entry on oeis.org

1, 2, 9, 20, 72, 144
Offset: 1

Views

Author

Omar E. Pol, Dec 31 2016

Keywords

Comments

The structure of the stepped pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593.
The terraces at the k-th level of the pyramid are also the parts of the symmetric representation of sigma(k), k >= 1.
The stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
For more information about the precipices see A277437 and A280223.
Is this sequence infinite?

Examples

			a(3) = 9 because descending by the main diagonal of the pyramid, the height difference between the level 9 and the level of the next terrace is equal to 3, and 9 is the smallest number with this property.
		

Crossrefs

Extensions

a(6) from Omar E. Pol, Jan 02 2017

A299472 a(n) is the sum of all divisors of all numbers k whose associated largest Dyck path contains the point (n,n) in the diagram of the symmetric representation of sigma(k) described in A237593, or 0 if no such k exists.

Original entry on oeis.org

1, 7, 13, 0, 20, 15, 43, 0, 66, 0, 24, 49, 59, 0, 134, 0, 60, 113, 0, 86, 0, 104, 165, 0, 48, 245, 0, 132, 0, 224, 0, 198, 0, 124, 57, 317, 0, 192, 0, 350, 0, 326, 0, 104, 211, 0, 434, 0, 216, 0, 0, 647, 0, 344, 0, 186, 331, 0, 584, 0, 270, 0, 234, 0, 672, 0, 350, 171, 0, 156, 639, 0, 672, 0, 390, 0, 368, 0, 956
Offset: 1

Views

Author

Omar E. Pol, Feb 19 2018

Keywords

Crossrefs

A299693 Irregular triangle read by rows in which row n lists the total sum of the divisors of all numbers k such that the largest Dyck path of the symmetric representation of sigma(k) contains the point (n,n); or row n is 0 if no such k exists.

Original entry on oeis.org

1, 3, 4, 7, 6, 0, 12, 8, 15, 13, 18, 12, 0, 28, 14, 24, 0, 24, 31, 18, 39, 20, 0, 42, 32, 36, 24, 0, 60, 31, 42, 40, 0, 56, 30, 0, 72, 32, 63, 48, 54, 0, 48, 91, 38, 60, 56, 0, 90, 42, 0, 96, 44, 84, 0, 78, 72, 48, 0, 124, 57, 93, 72, 98, 54, 0, 120, 72, 0, 120, 80, 90, 60, 0, 168, 62, 96, 0, 104, 127, 84, 0
Offset: 1

Views

Author

Omar E. Pol, Feb 19 2018

Keywords

Examples

			Triangle begins:
   1;
   3,  4;
   7,  6;
   0;
  12,  8;
  15;
  13, 18, 12;
   0;
  28, 14, 24;
   0;
  24;
  31, 18;
  39, 20;
   0;
  42, 32, 36, 24;
   0;
...
		

Crossrefs

Nonzero terms give A000203.
Row sums give A299472.
Cf. A259179(n) is the number of positive terms in row n.

Formula

T(n,m) = A000203(A279385(n,m)) if A279385(n,m) > 0, otherwise T(n,m) = 0.
Showing 1-5 of 5 results.