cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A281007 Number of middle divisors of the n-th number that has middle divisors.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 4, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 4, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 4, 1, 2, 4, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Feb 11 2017

Keywords

Comments

Conjecture 1: also widths of the successive terraces that we can find descending by the main diagonal of the pyramid described in A245092. Hence, bisection of A281012.
Conjecture 2: also number of central subparts in the symmetric representation of sigma of the numbers j that have the property that the number of parts in the symmetric representation of sigma(j) is odd.
Conjecture 3: Partial sums give A282131.

Crossrefs

Programs

  • Mathematica
    DeleteCases[#, 0] &@ Table[Count[Divisors@ n, d_ /; Sqrt[n/2] <= d < Sqrt[2 n]], {n, 300}] (* Michael De Vlieger, Feb 12 2017 *)

Formula

a(n) = A067742(A071562(n)).

A259179 Number of Dyck paths described in A237593 that contain the point (n,n) in the diagram of the symmetric representation of sigma.

Original entry on oeis.org

1, 2, 2, 0, 2, 1, 3, 0, 3, 0, 1, 2, 2, 0, 4, 0, 1, 3, 0, 2, 0, 2, 3, 0, 1, 4, 0, 2, 0, 3, 0, 3, 0, 1, 1, 4, 0, 2, 0, 4, 0, 3, 0, 1, 2, 0, 4, 0, 2, 0, 0, 5, 0, 3, 0, 1, 3, 0, 4, 0, 2, 0, 1, 0, 5, 0, 2, 1, 0, 1, 4, 0, 4, 0, 2, 0, 2, 0, 5, 0, 3, 0, 0, 0, 1, 5, 0, 2, 2, 0, 2, 0, 3, 0, 5, 0, 3, 0, 1, 0, 0, 6
Offset: 1

Views

Author

Omar E. Pol, Aug 11 2015

Keywords

Comments

Since the diagram of the symmetric representation of sigma is also the top view of the stepped pyramid described in A245092, and the diagram is also the top view of the staircase described in A244580, so we have that a(n) is also the height difference (or length of the vertical line segment) at the point (n,n) in the main diagonal of the mentioned structures.
a(n) is the number of occurrences of n in A240542. - Omar E. Pol, Dec 09 2016
Nonzero terms give A280919, the first differences of A071562. - Omar E. Pol, Apr 17 2018
Also first differences of A244367. Where records occur gives A279286. - Omar E. Pol, Apr 20 2020

Examples

			Illustration of initial terms:
--------------------------------------------------------
                           Diagram with 15 Dyck paths
n   A000203(n)  a(n)         to evaluate a(1)..a(10)
--------------------------------------------------------
.                         _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1        1        1      |_| | | | | | | | | | | | | | |
2        3        2      |_ _|_| | | | | | | | | | | | |
3        4        2      |_ _|  _|_| | | | | | | | | | |
4        7        0      |_ _ _|    _|_| | | | | | | | |
5        6        2      |_ _ _|  _|  _ _|_| | | | | | |
6       12        1      |_ _ _ _|  _| |  _ _|_| | | | |
7        8        3      |_ _ _ _| |_ _|_|    _ _|_| | |
8       15        0      |_ _ _ _ _|  _|     |  _ _ _|_|
9       13        3      |_ _ _ _ _| |      _|_| |
10      18        0      |_ _ _ _ _ _|  _ _|    _|
.                        |_ _ _ _ _ _| |  _|  _|
.                        |_ _ _ _ _ _ _| |_ _|
.                        |_ _ _ _ _ _ _| |
.                        |_ _ _ _ _ _ _ _|
.                        |_ _ _ _ _ _ _ _|
.
For n = 3 there are two Dyck paths that contain the point (3,3) so a(3) = 2.
For n = 4 there are no Dyck paths that contain the point (4,4) so a(4) = 0.
		

Crossrefs

Programs

  • Mathematica
    a240542[n_] := Sum[(-1)^(k+1)Ceiling[(n+1)/k - (k+1)/2], {k, 1, Floor[(Sqrt[8n+1]-1)/2]}]
    a259179[n_] := Module[{t=Table[0, n], k=1, d=1}, While[d<=n, t[[d]]+=1; d=a240542[++k]]; t] (* a(1..n) *)
    a259179[102] (* Hartmut F. W. Hoft, Aug 06 2020 *)

Extensions

More terms from Omar E. Pol, Dec 09 2016

A319796 Even numbers that have middle divisors, where "middle divisor" means a divisor in the half-open interval [sqrt(n/2), sqrt(n*2)).

Original entry on oeis.org

2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 50, 54, 56, 60, 64, 66, 70, 72, 80, 84, 88, 90, 96, 98, 100, 104, 108, 110, 112, 120, 126, 128, 130, 132, 140, 144, 150, 154, 156, 160, 162, 168, 170, 176, 180, 182, 190, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 238, 240, 242, 252, 256
Offset: 1

Views

Author

Omar E. Pol, Sep 28 2018

Keywords

Comments

Even numbers k such that the symmetric representation of sigma(k) has an odd number of parts.
An even number A005843 is in this sequence iff A067742(t) != 0.
For the definition of middle divisors, see A067742.
For more information about the symmetric representation of sigma(k) see A237593.
From Hartmut F. W. Hoft, Mar 28 2023: (Start)
By Theorem 1 (iii) in A067742, the number of middle divisors of a(n) equals the width of the symmetric representation of sigma(a(n)), SRS(a(n)), on the diagonal which equals the triangle entry A249223(n, A003056(n)). The maximum widths of the center part of SRS(a(n)) need not occur at the diagonal.
For example, a(7) = 2 * 3^2 = 18, SRS(18) has a single part with maximum width 2 while its width at the diagonal equals 1 = A067742(18), and divisor 3 is the only middle divisor of a(7). (End)

Examples

			6 is in the sequence because it's an even number and the symmetric representation of sigma(6) = 12 has an odd number of parts (more exactly only one part), as shown below:
.    _ _ _ _
.   |_ _ _  |_ 12
.         |   |_
.         |_ _  |
.             | |
.             | |
.             |_|
.
Also 50 is in the sequence because it's an even number and the symmetric representation of sigma(50) = 93 has an odd number of parts (more exactly three parts), they are [39, 15, 39].
a(34) = 110 = 2 * 5 * 11 has 10 and 11 as its middle divisors, and SRS(a(34)) has 3 parts and width 2 at the diagonal. -  _Hartmut F. W. Hoft_, Mar 28 2023
		

Crossrefs

Programs

  • Maple
    filter:= n -> ormap(t -> t^2 >= n/2 and t^2 < 2*n, numtheory:-divisors(n)):
    select(filter, 2*[$1..1000]); # Robert Israel, Mar 29 2023
  • Mathematica
    middleDiv[n_] := Select[Divisors[n], Sqrt[n/2]<=#Hartmut F. W. Hoft, Mar 28 2023 *)

Extensions

Name clarified by Omar E. Pol, Mar 28 2023

A319529 Odd numbers that have middle divisors.

Original entry on oeis.org

1, 9, 15, 25, 35, 45, 49, 63, 77, 81, 91, 99, 117, 121, 135, 143, 153, 165, 169, 187, 195, 209, 221, 225, 231, 247, 255, 273, 285, 289, 299, 315, 323, 325, 345, 357, 361, 375, 391, 399, 405, 425, 435, 437, 441, 459, 475, 483, 493, 513, 525, 527, 529, 551, 561, 567, 575, 589, 609, 621, 625, 627, 651
Offset: 1

Views

Author

Omar E. Pol, Sep 23 2018

Keywords

Comments

Odd numbers k such that the symmetric representation of sigma(k) has an odd number of parts.
From Felix Fröhlich, Sep 25 2018: (Start)
For the definition of middle divisors, see A067742.
Let t be a term of A005408. Then t is in this sequence iff A067742(t) != 0. (End)
From Hartmut F. W. Hoft, May 24 2022: (Start)
By Theorem 1 (iii) in A067742, the number of middle divisors of a(n) equals the width of the symmetric representation of sigma(a(n)) on the diagonal which equals the triangle entry A249223(n, A003056(n)).
All terms in sequence A016754 have an odd number of middle divisors, forming a subsequence of this sequence; A016754(18) = a(116) = 1225 = 5^2 * 7^2 is the smallest number in A016754 with 3 middle divisors: 25, 35, 49.
Sequence A259417 is a subsequence of this sequence and of A320137 since an even power of a prime has a single middle divisor.
The maximum widths of the center part of the symmetric representation of sigma(a(n)), SRS(a(n)), need not occur at the diagonal. For example, a(304) = 3^3 * 5^3 = 3375, SRS(3375) has 3 parts, its center part has maximum width 3 while its width at the diagonal equals 2 = A067742(3375), and divisors 45 and 75 are the two middle divisors of a(304). (End)

Examples

			9 is in the sequence because it's an odd number and the symmetric representation of sigma(9) = 13 has an odd number of parts (more exactly three parts), as shown below:
.
.     _ _ _ _ _ 5
.    |_ _ _ _ _|
.              |_ _ 3
.              |_  |
.                |_|_ _ 5
.                    | |
.                    | |
.                    | |
.                    | |
.                    |_|
.
		

Crossrefs

Programs

  • Mathematica
    middleDiv[n_] := Select[Divisors[n], Sqrt[n/2]<=#Hartmut F. W. Hoft, May 24 2022 *)
  • Python
    from itertools import islice, count
    from sympy import divisors
    def A319529_gen(startvalue=1): # generator of terms >= startvalue
        for k in count(max(1,startvalue+1-(startvalue&1)),2):
            if any((k <= 2*d**2 < 4*k for d in divisors(k,generator=True))):
                yield k
    A319529_list = list(islice(A319529_gen(startvalue=11),40)) # Chai Wah Wu, Jun 09 2022

A319802 Even numbers without middle divisors.

Original entry on oeis.org

10, 14, 22, 26, 34, 38, 44, 46, 52, 58, 62, 68, 74, 76, 78, 82, 86, 92, 94, 102, 106, 114, 116, 118, 122, 124, 134, 136, 138, 142, 146, 148, 152, 158, 164, 166, 172, 174, 178, 184, 186, 188, 194, 202, 206, 212, 214, 218, 222, 226, 230, 232, 236, 244, 246, 248, 250, 254, 258, 262, 268, 274, 278, 282, 284
Offset: 1

Views

Author

Omar E. Pol, Sep 28 2018

Keywords

Comments

Even numbers k such that the symmetric representation of sigma(k) has an even number of parts.
For the definition of middle divisors, see A067742.
For more information about the symmetric representation of sigma(k) see A237593.
Let p be a prime > 5. Then a(n) is a number of the form m*p where m is an even number < sqrt(p). - David A. Corneth, Sep 28 2018
First differs from A244894 at a(51) = 230. - R. J. Mathar, Oct 04 2018
Is this twice A101550? - Omar E. Pol, Oct 04 2018
This sequence is not twice A101550: first differs at a(57) = 250 != 254 = 2*A101550(57). - Michael S. Branicky, Oct 14 2021

Examples

			10 is in the sequence because it's an even number and the symmetric representation of sigma(10) = 18 has an even number of parts as shown below:
.
.     _ _ _ _ _ _ 9
.    |_ _ _ _ _  |
.              | |_
.              |_ _|_
.                  | |_ _ 9
.                  |_ _  |
.                      | |
.                      | |
.                      | |
.                      | |
.                      |_|
.
		

Crossrefs

Programs

  • Python
    from sympy import divisors
    def ok(n):
        if n < 2 or n%2 == 1: return False
        return not any(n//2 <= d*d < 2*n for d in divisors(n, generator=True))
    print(list(filter(ok, range(285)))) # Michael S. Branicky, Oct 14 2021

A319801 Odd numbers without middle divisors.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 75, 79, 83, 85, 87, 89, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 123, 125, 127, 129, 131, 133, 137, 139, 141, 145, 147, 149, 151, 155, 157, 159, 161, 163, 167, 171, 173, 175, 177
Offset: 1

Views

Author

Omar E. Pol, Sep 28 2018

Keywords

Comments

Odd numbers k such that the symmetric representation of sigma(k) has an even number of parts.
All odd primes (A065091) are in the sequence.
For the definition of middle divisors, see A067742.
For more information about the symmetric representation of sigma(k) see A237593.

Examples

			21 is in the sequence because it's an odd number and the symmetric representation of sigma(21) = 32 has an even number of parts (more exactly four parts), as shown below:
.     _ _ _ _ _ _ _ _ _ _ _ 11
.    |_ _ _ _ _ _ _ _ _ _ _|
.                          |
.                          |
.                          |_ _ _ 5
.                          |_ _  |_
.                              |_ _|_
.                                  | |_ 5
.                                  |_  |
.                                    | |
.                                    |_|_ _ _ _ 11
.                                            | |
.                                            | |
.                                            | |
.                                            | |
.                                            | |
.                                            | |
.                                            | |
.                                            | |
.                                            | |
.                                            | |
.                                            |_|
.
		

Crossrefs

A276112 Numbers with precipice 1: descending by the main diagonal of the pyramid described in A245092, the height difference between the level a(n) (starting from the top) and the level of the next terrace is equal to 1.

Original entry on oeis.org

1, 3, 5, 7, 8, 11, 14, 15, 17, 19, 23, 24, 27, 29, 31, 34, 35, 39, 41, 44, 47, 48, 49, 53, 55, 59, 62, 63, 65, 69, 71, 76, 79, 80, 83, 87, 89, 90, 95, 97, 98, 99, 103, 107, 109, 111, 116, 119, 120, 125, 127, 129, 131, 134, 139, 142, 143, 149, 152, 153, 155, 159
Offset: 1

Views

Author

Omar E. Pol, Jan 02 2017

Keywords

Comments

The structure of the stepped pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593.
The terraces at the k-th level of the pyramid are also the parts of the symmetric representation of sigma(k).
The stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
For more information about the precipices see A277437, A280223 and A280295.
From Hartmut F. W. Hoft, Feb 02 2022: (Start)
Also partial sums of A280919.
a(n) is also the largest number of a Dyck path that crosses the diagonal at point A282131(n) which also is the rightmost number in each nonzero row of the irregular triangle in A279385. (End)

Examples

			From _Hartmut F. W. Hoft_, Feb 02 2022: (Start)
      n: 1  2  3  4  5  6  7  8  9 10 11 12 13 14 index.
A282131: 1  2  3  5  6  7  9 11 12 13 15 17 18 20 position on diagonal.
A276112: 1  3  5  7  8 11 14 15 17 19 23 24 27 29 max index of Dyck path.
A280919: 1  2  2  2  1  3  3  1  2  2  4  1  3  2 paths at diag position.
(End)
		

Crossrefs

Programs

  • Mathematica
    (* last computed value of a280919[ ] is dropped to avoid a potential undercount of crossings *)
    a240542[n_] := Sum[(-1)^(k+1)Ceiling[(n+1)/k-(k+1)/2], {k, 1, Floor[-1/2+1/2 Sqrt[8n+1]]}]
    a280919[n_] := Most[Map[Length, Split[Map[a240542, Range[n]]]]]
    A276112[160] (* Hartmut F. W. Hoft, Feb 02 2022 *)

Formula

a(n) = A071562(n+1) - 1.
a(n) = Sum_{i=1..n} A280919(i), n >= 1. - Hartmut F. W. Hoft, Feb 02 2022

A281012 Zig-zag path that we can find descending by the main diagonal of the pyramid described in A245092.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 3, 2, 3, 2, 1, 1, 2, 1, 2, 2, 4, 2, 1, 1, 3, 2, 2, 2, 2, 1, 3, 2, 1, 1, 4, 2, 2, 2, 3, 2, 3, 2, 1, 1, 1, 1, 4, 2, 2, 2, 4, 2, 3, 2, 1, 1, 2, 2, 4, 2, 2, 3, 5, 2, 3, 2, 1, 1, 3, 2, 4, 2, 2, 2, 1, 2, 5, 2, 2, 1, 1, 2, 1, 1, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 3, 4, 1, 1, 5, 2, 2, 1, 2
Offset: 1

Views

Author

Omar E. Pol, Feb 11 2017

Keywords

Comments

The odd-indexed terms are the widths of the successive terraces in the main diagonal of the pyramid.
Conjecture: the odd-indexed terms give A281007, the positive terms in A067742.
The even-indexed terms are the precipices from the successive terraces, descending by the main diagonal of the pyramid.
The even-indexed terms give A280919, the first differences of A071562.
The structure of the pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593 (see links).
The mentioned pyramid is also a 3D-quadrant of the pyramid described in A244050.

Crossrefs

A299472 a(n) is the sum of all divisors of all numbers k whose associated largest Dyck path contains the point (n,n) in the diagram of the symmetric representation of sigma(k) described in A237593, or 0 if no such k exists.

Original entry on oeis.org

1, 7, 13, 0, 20, 15, 43, 0, 66, 0, 24, 49, 59, 0, 134, 0, 60, 113, 0, 86, 0, 104, 165, 0, 48, 245, 0, 132, 0, 224, 0, 198, 0, 124, 57, 317, 0, 192, 0, 350, 0, 326, 0, 104, 211, 0, 434, 0, 216, 0, 0, 647, 0, 344, 0, 186, 331, 0, 584, 0, 270, 0, 234, 0, 672, 0, 350, 171, 0, 156, 639, 0, 672, 0, 390, 0, 368, 0, 956
Offset: 1

Views

Author

Omar E. Pol, Feb 19 2018

Keywords

Crossrefs

A299693 Irregular triangle read by rows in which row n lists the total sum of the divisors of all numbers k such that the largest Dyck path of the symmetric representation of sigma(k) contains the point (n,n); or row n is 0 if no such k exists.

Original entry on oeis.org

1, 3, 4, 7, 6, 0, 12, 8, 15, 13, 18, 12, 0, 28, 14, 24, 0, 24, 31, 18, 39, 20, 0, 42, 32, 36, 24, 0, 60, 31, 42, 40, 0, 56, 30, 0, 72, 32, 63, 48, 54, 0, 48, 91, 38, 60, 56, 0, 90, 42, 0, 96, 44, 84, 0, 78, 72, 48, 0, 124, 57, 93, 72, 98, 54, 0, 120, 72, 0, 120, 80, 90, 60, 0, 168, 62, 96, 0, 104, 127, 84, 0
Offset: 1

Views

Author

Omar E. Pol, Feb 19 2018

Keywords

Examples

			Triangle begins:
   1;
   3,  4;
   7,  6;
   0;
  12,  8;
  15;
  13, 18, 12;
   0;
  28, 14, 24;
   0;
  24;
  31, 18;
  39, 20;
   0;
  42, 32, 36, 24;
   0;
...
		

Crossrefs

Nonzero terms give A000203.
Row sums give A299472.
Cf. A259179(n) is the number of positive terms in row n.

Formula

T(n,m) = A000203(A279385(n,m)) if A279385(n,m) > 0, otherwise T(n,m) = 0.
Showing 1-10 of 10 results.