cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A240062 Square array read by antidiagonals in which T(n,k) is the n-th number j with the property that the symmetric representation of sigma(j) has k parts, with j >= 1, n >= 1, k >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 6, 7, 15, 21, 8, 10, 25, 27, 63, 12, 11, 35, 33, 81, 147, 16, 13, 45, 39, 99, 171, 357, 18, 14, 49, 51, 117, 189, 399, 903, 20, 17, 50, 55, 153, 207, 441, 987, 2499, 24, 19, 70, 57, 165, 243, 483, 1029, 2709, 6069, 28, 22, 77, 65, 195, 261, 513, 1113
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2014

Keywords

Comments

This is a permutation of the positive integers.
All odd primes are in column 2 (together with some even composite numbers) because the symmetric representation of sigma(prime(i)) is [m, m], where m = (1 + prime(i))/2, for i >= 2.
The union of all odd-indexed columns gives A071562, the positive integers that have middle divisors. The union of all even-indexed columns gives A071561, the positive integers without middle divisors. - Omar E. Pol, Oct 01 2018
Each column in the table of A357581 is a subsequence of the respective column in the table of this sequence; however, the first row in the table of A357581 is not a subsequence of the first row in the table of this sequence. - Hartmut F. W. Hoft, Oct 04 2022
Conjecture: T(n,k) is the n-th positive integer with k 2-dense sublists of divisors. - Omar E. Pol, Aug 25 2025

Examples

			Array begins:
   1,  3,  9, 21,  63, 147, 357,  903, 2499, 6069, ...
   2,  5, 15, 27,  81, 171, 399,  987, 2709, 6321, ...
   4,  7, 25, 33,  99, 189, 441, 1029, 2793, 6325, ...
   6, 10, 35, 39, 117, 207, 483, 1113, 2961, 6783, ...
   8, 11, 45, 51, 153, 243, 513, 1197, 3025, 6875, ...
  12, 13, 49, 55, 165, 261, 567, 1239, 3087, 6909, ...
  16, 14, 50, 57, 195, 275, 609, 1265, 3249, 7011, ...
  18, 17, 70, 65, 231, 279, 621, 1281, 3339, 7203, ...
  20, 19, 77, 69, 255, 297, 651, 1375, 3381, 7353, ...
  24, 22, 91, 75, 273, 333, 729, 1407, 3591, 7581, ...
  ...
[Lower right hand triangle of array completed by _Hartmut F. W. Hoft_, Oct 04 2022]
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
    widthTable[n_, {r_, c_}] := Module[{k, list=Table[{}, c], parts}, For[k=1, k<=n, k++, parts=partsSRS[k]; If[parts<=c&&Length[list[[parts]]]=1, j--, vec[[PolygonalNumber[i+j-2]+j]]=arr[[i, j]]]]; vec]
    a240062T[n_, r_] := TableForm[widthTable[n, {r, r}]]
    a240062[6069, 10] (* data *)
    a240062T[7581, 10] (* 10 X 10 array - Hartmut F. W. Hoft, Oct 04 2022 *)

Extensions

a(n) > 128 from Michel Marcus, Apr 08 2014

A319796 Even numbers that have middle divisors, where "middle divisor" means a divisor in the half-open interval [sqrt(n/2), sqrt(n*2)).

Original entry on oeis.org

2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 50, 54, 56, 60, 64, 66, 70, 72, 80, 84, 88, 90, 96, 98, 100, 104, 108, 110, 112, 120, 126, 128, 130, 132, 140, 144, 150, 154, 156, 160, 162, 168, 170, 176, 180, 182, 190, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 238, 240, 242, 252, 256
Offset: 1

Views

Author

Omar E. Pol, Sep 28 2018

Keywords

Comments

Even numbers k such that the symmetric representation of sigma(k) has an odd number of parts.
An even number A005843 is in this sequence iff A067742(t) != 0.
For the definition of middle divisors, see A067742.
For more information about the symmetric representation of sigma(k) see A237593.
From Hartmut F. W. Hoft, Mar 28 2023: (Start)
By Theorem 1 (iii) in A067742, the number of middle divisors of a(n) equals the width of the symmetric representation of sigma(a(n)), SRS(a(n)), on the diagonal which equals the triangle entry A249223(n, A003056(n)). The maximum widths of the center part of SRS(a(n)) need not occur at the diagonal.
For example, a(7) = 2 * 3^2 = 18, SRS(18) has a single part with maximum width 2 while its width at the diagonal equals 1 = A067742(18), and divisor 3 is the only middle divisor of a(7). (End)

Examples

			6 is in the sequence because it's an even number and the symmetric representation of sigma(6) = 12 has an odd number of parts (more exactly only one part), as shown below:
.    _ _ _ _
.   |_ _ _  |_ 12
.         |   |_
.         |_ _  |
.             | |
.             | |
.             |_|
.
Also 50 is in the sequence because it's an even number and the symmetric representation of sigma(50) = 93 has an odd number of parts (more exactly three parts), they are [39, 15, 39].
a(34) = 110 = 2 * 5 * 11 has 10 and 11 as its middle divisors, and SRS(a(34)) has 3 parts and width 2 at the diagonal. -  _Hartmut F. W. Hoft_, Mar 28 2023
		

Crossrefs

Programs

  • Maple
    filter:= n -> ormap(t -> t^2 >= n/2 and t^2 < 2*n, numtheory:-divisors(n)):
    select(filter, 2*[$1..1000]); # Robert Israel, Mar 29 2023
  • Mathematica
    middleDiv[n_] := Select[Divisors[n], Sqrt[n/2]<=#Hartmut F. W. Hoft, Mar 28 2023 *)

Extensions

Name clarified by Omar E. Pol, Mar 28 2023

A319529 Odd numbers that have middle divisors.

Original entry on oeis.org

1, 9, 15, 25, 35, 45, 49, 63, 77, 81, 91, 99, 117, 121, 135, 143, 153, 165, 169, 187, 195, 209, 221, 225, 231, 247, 255, 273, 285, 289, 299, 315, 323, 325, 345, 357, 361, 375, 391, 399, 405, 425, 435, 437, 441, 459, 475, 483, 493, 513, 525, 527, 529, 551, 561, 567, 575, 589, 609, 621, 625, 627, 651
Offset: 1

Views

Author

Omar E. Pol, Sep 23 2018

Keywords

Comments

Odd numbers k such that the symmetric representation of sigma(k) has an odd number of parts.
From Felix Fröhlich, Sep 25 2018: (Start)
For the definition of middle divisors, see A067742.
Let t be a term of A005408. Then t is in this sequence iff A067742(t) != 0. (End)
From Hartmut F. W. Hoft, May 24 2022: (Start)
By Theorem 1 (iii) in A067742, the number of middle divisors of a(n) equals the width of the symmetric representation of sigma(a(n)) on the diagonal which equals the triangle entry A249223(n, A003056(n)).
All terms in sequence A016754 have an odd number of middle divisors, forming a subsequence of this sequence; A016754(18) = a(116) = 1225 = 5^2 * 7^2 is the smallest number in A016754 with 3 middle divisors: 25, 35, 49.
Sequence A259417 is a subsequence of this sequence and of A320137 since an even power of a prime has a single middle divisor.
The maximum widths of the center part of the symmetric representation of sigma(a(n)), SRS(a(n)), need not occur at the diagonal. For example, a(304) = 3^3 * 5^3 = 3375, SRS(3375) has 3 parts, its center part has maximum width 3 while its width at the diagonal equals 2 = A067742(3375), and divisors 45 and 75 are the two middle divisors of a(304). (End)

Examples

			9 is in the sequence because it's an odd number and the symmetric representation of sigma(9) = 13 has an odd number of parts (more exactly three parts), as shown below:
.
.     _ _ _ _ _ 5
.    |_ _ _ _ _|
.              |_ _ 3
.              |_  |
.                |_|_ _ 5
.                    | |
.                    | |
.                    | |
.                    | |
.                    |_|
.
		

Crossrefs

Programs

  • Mathematica
    middleDiv[n_] := Select[Divisors[n], Sqrt[n/2]<=#Hartmut F. W. Hoft, May 24 2022 *)
  • Python
    from itertools import islice, count
    from sympy import divisors
    def A319529_gen(startvalue=1): # generator of terms >= startvalue
        for k in count(max(1,startvalue+1-(startvalue&1)),2):
            if any((k <= 2*d**2 < 4*k for d in divisors(k,generator=True))):
                yield k
    A319529_list = list(islice(A319529_gen(startvalue=11),40)) # Chai Wah Wu, Jun 09 2022

A319802 Even numbers without middle divisors.

Original entry on oeis.org

10, 14, 22, 26, 34, 38, 44, 46, 52, 58, 62, 68, 74, 76, 78, 82, 86, 92, 94, 102, 106, 114, 116, 118, 122, 124, 134, 136, 138, 142, 146, 148, 152, 158, 164, 166, 172, 174, 178, 184, 186, 188, 194, 202, 206, 212, 214, 218, 222, 226, 230, 232, 236, 244, 246, 248, 250, 254, 258, 262, 268, 274, 278, 282, 284
Offset: 1

Views

Author

Omar E. Pol, Sep 28 2018

Keywords

Comments

Even numbers k such that the symmetric representation of sigma(k) has an even number of parts.
For the definition of middle divisors, see A067742.
For more information about the symmetric representation of sigma(k) see A237593.
Let p be a prime > 5. Then a(n) is a number of the form m*p where m is an even number < sqrt(p). - David A. Corneth, Sep 28 2018
First differs from A244894 at a(51) = 230. - R. J. Mathar, Oct 04 2018
Is this twice A101550? - Omar E. Pol, Oct 04 2018
This sequence is not twice A101550: first differs at a(57) = 250 != 254 = 2*A101550(57). - Michael S. Branicky, Oct 14 2021

Examples

			10 is in the sequence because it's an even number and the symmetric representation of sigma(10) = 18 has an even number of parts as shown below:
.
.     _ _ _ _ _ _ 9
.    |_ _ _ _ _  |
.              | |_
.              |_ _|_
.                  | |_ _ 9
.                  |_ _  |
.                      | |
.                      | |
.                      | |
.                      | |
.                      |_|
.
		

Crossrefs

Programs

  • Python
    from sympy import divisors
    def ok(n):
        if n < 2 or n%2 == 1: return False
        return not any(n//2 <= d*d < 2*n for d in divisors(n, generator=True))
    print(list(filter(ok, range(285)))) # Michael S. Branicky, Oct 14 2021

A320137 Numbers that have only one middle divisor.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 25, 32, 36, 49, 50, 64, 81, 98, 100, 121, 128, 162, 169, 196, 200, 225, 242, 256, 289, 324, 338, 361, 392, 441, 484, 512, 529, 578, 625, 676, 722, 729, 784, 841, 882, 961, 968, 1024, 1058, 1089, 1156, 1250, 1352, 1369, 1444, 1458, 1521, 1681, 1682, 1849, 1922, 1936, 2025, 2048, 2116
Offset: 1

Views

Author

Omar E. Pol, Oct 06 2018

Keywords

Comments

Conjecture 1: sequence consists of numbers k with the property that the difference between the number of partitions of k into an odd number of consecutive parts and the number of partitions of k into an even number of consecutive parts is equal to 1.
Conjecture 2: sequence consists of numbers k with the property that the symmetric representation of sigma(k) has width 1 on the main diagonal.
Conjecture 3: all powers of 2 are in the sequence.
From Hartmut F. W. Hoft, May 24 2022: (Start)
Every number in this sequence is a square or twice a square, i.e., this sequence is a subsequence of A028982, and conjectures 2 and 3 are true (see the link for proofs). Furthermore, all odd numbers in this sequence are squares and form subsequences of A016754 and of A319529.
Every number k in this sequence has the form k = 2^m * q^2, m >= 0, q >= 1 odd, where for any divisor e of q^2 smaller than the largest divisor of q^2 that is less than or equal to row(q^2) = floor((sqrt(8*q^2 + 1) - 1)/2) the inequalities 2^(m+1) * e < row(n) hold (see the link for a proof).
The smallest odd square not in this sequence is 1225 = 35^2 = (5*7)^2 since it has the 3 middle divisors 25, 35, 49 and the width of the symmetric representation of sigma(1225) at the diagonal equals 3. However, the squares of odd primes in this sequence are a subsequence of A259417.
The smallest even square not in this sequence is 144 = 12^2 = (2*2*3)^2 since it has the 3 middle divisors 9, 12, 16 and the width of the symmetric representation of sigma(144) at the diagonal equals 3.
The smallest twice square not in this sequence is 72 = 2 * (2*3)^2 = 2^3 * 3^2 since it has the 3 middle divisors 6, 8, 9 and the width of the symmetric representation of sigma(72) at the diagonal equals 3.
Apart from the powers of 2 in the infinite first row, the numbers in the sequence can be arranged as an irregular triangle with each row containing the finitely many numbers q^2, 2 * q^2, 4 * q^2, ..., 2^m * q^2 satisfying the condition stated above, as shown below:
1 2 4 8 16 32 64 128 256 ...
9 18 36
25 50 100 200
49 98 196 392 784
81 162 324
121 242 484 968 1936 3872
169 338 676 1352 2704 5408 10816
225
289 578 1156 2312 4624 9248 18496 36992
361 722 1444 2888 5776 11552 23104 46208
441 882
529 1058 2116 4232 8464 16928 33856 67712 135424
625 1250 2500 5000
729 1458 2916
841 1682 3364 6728 13456 26912 53824 107648 215296
...
(End)

Examples

			9 is in the sequence because 9 has only one middle divisor: 3.
On the other hand, in accordance with the first conjecture, 9 is in the sequence because there are two partitions of 9 into an odd number of consecutive parts: [9], [4, 3, 2], and there is only one partition of 9 into an even number of consecutive parts: [5, 4], therefore the difference of the number of those partitions is 2 - 1 = 1.
On the other hand, in accordance with the second conjecture, 9 is in the sequence because the symmetric representation of sigma(9) = 13 has width 1 on the main diagonal, as shown below in the first quadrant:
.
.     _ _ _ _ _ 5
.    |_ _ _ _ _|
.              |_ _ 3
.              |_  |
.                |_|_ _ 5
.                    | |
.                    | |
.                    | |
.                    | |
.                    |_|
.
		

Crossrefs

Column 1 of A320051.
First differs from A028982 at a(14).
For the definition of middle divisors see A067742.

Programs

  • Mathematica
    (* computation based on counts of divisors *)
    middleDiv[n_] := Select[Divisors[n], Sqrt[n/2]<=#A237048 and A249223 for width at diagonal *)
    a249223[n_] := Drop[FoldList[Plus, 0, Map[(-1)^(#+1) a237048[n, #]&, Range[Floor[(Sqrt[8n+1]-1)/2]]]], 1]
    a320137W[n_] := Select[Range[n], Last[a249223[#]]==1&]
    a320137W[2116]
    (* Hartmut F. W. Hoft, May 24 2022 *)

A320142 Numbers that have exactly two middle divisors.

Original entry on oeis.org

6, 12, 15, 20, 24, 28, 30, 35, 40, 42, 45, 48, 54, 56, 60, 63, 66, 70, 77, 80, 84, 88, 90, 91, 96, 99, 104, 108, 110, 112, 117, 126, 130, 132, 135, 140, 143, 150, 153, 154, 156, 160, 165, 168, 170, 176, 182, 187, 190, 192, 195, 198, 204, 208, 209, 210, 216, 220, 221, 224, 228, 231, 234, 238, 247, 255, 260
Offset: 1

Views

Author

Omar E. Pol, Oct 06 2018

Keywords

Comments

Conjecture 1: numbers k with the property that the difference between the number of partitions of k into an odd number of consecutive parts and the number of partitions of k into an even number of consecutive parts is equal to 2.
Conjecture 2: numbers k with the property that symmetric representation of sigma(k) has width 2 on the main diagonal.
By the theorem in A067742 conjecture 2 is true. - Hartmut F. W. Hoft, Aug 18 2024

Examples

			15 is in the sequence because 15 has two middle divisors: 3 and 5.
On the other hand, in accordance with the first conjecture, 15 is in the sequence because there are three partitions of 15 into an odd number of consecutive parts: [15], [8, 7], [5, 4, 3, 2, 1], and there is only one partition of 15 into an even number of consecutive parts: [8, 7], therefore the difference of the number of those partitions is 3 - 1 = 2.
On the other hand, in accordance with the second conjecture, 15 is in the sequence because the symmetric representation of sigma(15) = 24 has width 2 on the main diagonal, as shown below in the fourth quadrant:
.                                _
.                               | |
.                               | |
.                               | |
.                               | |
.                               | |
.                               | |
.                               | |
.                          _ _ _|_|
.                      _ _| |      8
.                     |    _|
.                    _|  _|
.                   |_ _|  8
.                   |
.    _ _ _ _ _ _ _ _|
.   |_ _ _ _ _ _ _ _|
.                    8
.
		

Crossrefs

Column 2 of A320051.
First differs from A001284 at a(19).
For the definition of middle divisors see A067742.

Programs

  • Mathematica
    a320142Q[k_] := Length[Select[Divisors[k], k/2<=#^2<2k&]]==2
    a320142[n_] := Select[Range[n], a320142Q]
    a320142[260] (* Hartmut F. W. Hoft, Aug 20 2024 *)

A320051 Square array read by antidiagonals upwards: T(n,k) is the n-th positive integer with exactly k middle divisors, n >= 1, k >= 0.

Original entry on oeis.org

3, 5, 1, 7, 2, 6, 10, 4, 12, 72, 11, 8, 15, 144, 120, 13, 9, 20, 288, 180, 1800, 14, 16, 24, 400, 240, 3528, 840, 17, 18, 28, 450, 252, 4050, 1080, 3600, 19, 25, 30, 576, 336, 5184, 1260, 7200, 2520, 21, 32, 35, 648, 360, 7056, 1440, 14112, 5040, 28800, 22, 36, 40, 800, 378, 8100, 1680, 14400, 5544
Offset: 1

Views

Author

Omar E. Pol, Oct 04 2018

Keywords

Comments

This is a permutation of the natural numbers.
For the definition of middle divisors see A067742.
Conjecture 1: T(n,k) is also the n-th positive integer j with the property that the difference between the number of partitions of j into an odd number of consecutive parts and the number of partitions of j into an even number of consecutive parts is equal to k.
Conjecture 2: T(n,k) is also the n-th positive integer j with the property that the symmetric representation of sigma(j) has width k on the main diagonal.

Examples

			The corner of the square array begins:
   3,  1,  6,  72, 120, 1800,  840,  3600, 2520, 28800, ...
   5,  2, 12, 144, 180, 3528, 1080,  7200, 5040, ...
   7,  4, 15, 288, 240, 4050, 1260, 14112, ...
  10,  8, 20, 400, 252, 5184, 1440, ...
  11,  9, 24, 450, 336, 7056, ...
  13, 16, 28, 576, 360, ...
  14, 18, 30, 648, ...
  17, 25, 35, ...
  19, 32, ...
  21, ...
  ...
In accordance with the conjecture 1, T(1,0) = 3 because there is only one partition of 3 into an odd number of consecutive parts: [3], and there is only one partition of 3 into an even number of consecutive parts: [2, 1], therefore the difference of the number of those partitions is 1 - 1 = 0.
On the other hand, in accordance with the conjecture 2: T(1,0) = 3 because the symmetric representation of sigma(3) = 4 has width 0 on the main diagonal, as shown below:
.    _ _
.   |_ _|_
.       | |
.       |_|
.
In accordance with the conjecture 1, T(1,2) = 6 because there are three partitions of 6 into an odd number of consecutive parts: [6], [3, 2, 1], and there are no partitions of 6 into an even number of consecutive parts, therefore the difference of the number of those partitions is 2 - 0 = 2.
On the other hand, in accordance with the conjecture 2: T(1,2) = 6 because the symmetric representation of sigma(6) = 12 has width 2 on the main diagonal, as shown below:
.    _ _ _ _
.   |_ _ _  |_
.         |   |_
.         |_ _  |
.             | |
.             | |
.             |_|
.
		

Crossrefs

Row 1 is A128605.
Column 0 is A071561.
The union of the rest of the columns gives A071562.
Column 1 is A320137.
Column 2 is A320142.
For more information about the diagrams see A237593.
For tables of partitions into consecutive parts see A286000 and A286001.
Showing 1-8 of 8 results.