cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A237270 Triangle read by rows in which row n lists the parts of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 3, 2, 2, 7, 3, 3, 12, 4, 4, 15, 5, 3, 5, 9, 9, 6, 6, 28, 7, 7, 12, 12, 8, 8, 8, 31, 9, 9, 39, 10, 10, 42, 11, 5, 5, 11, 18, 18, 12, 12, 60, 13, 5, 13, 21, 21, 14, 6, 6, 14, 56, 15, 15, 72, 16, 16, 63, 17, 7, 7, 17, 27, 27, 18, 12, 18, 91, 19, 19, 30, 30, 20, 8, 8, 20, 90
Offset: 1

Views

Author

Omar E. Pol, Feb 19 2014

Keywords

Comments

T(n,k) is the number of cells in the k-th region of the n-th set of regions in a diagram of the symmetry of sigma(n), see example.
Row n is a palindromic composition of sigma(n).
Row sums give A000203.
Row n has length A237271(n).
In the row 2n-1 of triangle both the first term and the last term are equal to n.
If n is an odd prime then row n is [m, m], where m = (1 + n)/2.
The connection with A196020 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A239660 --> this sequence.
For the boundary segments in an octant see A237591.
For the boundary segments in a quadrant see A237593.
For the boundary segments in the spiral see also A239660.
For the parts in every quadrant of the spiral see A239931, A239932, A239933, A239934.
We can find the spiral on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016
T(n,k) is also the area of the k-th terrace, from left to right, at the n-th level, starting from the top, of the stepped pyramid described in A245092 (see Links section). - Omar E. Pol, Aug 14 2018

Examples

			Illustration of the first 27 terms as regions (or parts) of a spiral constructed with the first 15.5 rows of A239660:
.
.                  _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
.                 | |             |_ _ _ _ _ _ _|
.             12 _| |                           |
.               |_ _|  _ _ _ _ _ _              |_ _
.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_
.      _ _ _| |    9 _| |         |_ _ _ _ _|         |
.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
.     | |      _ _| |      _ _ _ _          |_  |         | |
.     | |     |  _ _| 12 _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
.     | |     | |      _|   |     |_ _ _|         | |     | |
.     | |     | |     |  _ _|           |_ _ 3    | |     | |
.     | |     | |     | |    3 _ _        | |     | |     | |
.     | |     | |     | |     |  _|_ 1    | |     | |     | |
.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
.   | |     | |     | |     | |         | |     | |     | |     | |
.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
.   | |     | |     |_|_     2    |_ _ _|7   _ _| |     | |     | |
.   | |     | |    4    |_                 _|  _ _|     | |     | |
.   | |     |_|_ _        |_ _ _ _        |  _|    _ _ _| |     | |
.   | |    6      |_      |_ _ _ _|_ _ _ _| | 15 _|    _ _|     | |
.   |_|_ _ _        |_   4        |_ _ _ _ _|  _|     |    _ _ _| |
.  8      | |_ _      |                       |      _|   |  _ _ _|
.         |_    |     |_ _ _ _ _ _            |  _ _|28  _| |
.           |_  |_    |_ _ _ _ _ _|_ _ _ _ _ _| |      _|  _|
.          8  |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|
.                 |                               |  _ _|  31
.                 |_ _ _ _ _ _ _ _                | |
.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
.                8                |_ _ _ _ _ _ _ _ _|
.
.
[For two other drawings of the spiral see the links. - _N. J. A. Sloane_, Nov 16 2020]
If the sequence does not contain negative terms then its terms can be represented in a quadrant. For the construction of the diagram we use the symmetric Dyck paths of A237593 as shown below:
---------------------------------------------------------------
Triangle         Diagram of the symmetry of sigma (n = 1..24)
---------------------------------------------------------------
.              _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1;            |_| | | | | | | | | | | | | | | | | | | | | | | |
3;            |_ _|_| | | | | | | | | | | | | | | | | | | | | |
2, 2;         |_ _|  _|_| | | | | | | | | | | | | | | | | | | |
7;            |_ _ _|    _|_| | | | | | | | | | | | | | | | | |
3, 3;         |_ _ _|  _|  _ _|_| | | | | | | | | | | | | | | |
12;           |_ _ _ _|  _| |  _ _|_| | | | | | | | | | | | | |
4, 4;         |_ _ _ _| |_ _|_|    _ _|_| | | | | | | | | | | |
15;           |_ _ _ _ _|  _|     |  _ _ _|_| | | | | | | | | |
5, 3, 5;      |_ _ _ _ _| |      _|_| |  _ _ _|_| | | | | | | |
9, 9;         |_ _ _ _ _ _|  _ _|    _| |    _ _ _|_| | | | | |
6, 6;         |_ _ _ _ _ _| |  _|  _|  _|   |  _ _ _ _|_| | | |
28;           |_ _ _ _ _ _ _| |_ _|  _|  _ _| | |  _ _ _ _|_| |
7, 7;         |_ _ _ _ _ _ _| |  _ _|  _|    _| | |    _ _ _ _|
12, 12;       |_ _ _ _ _ _ _ _| |     |     |  _|_|   |* * * *
8, 8, 8;      |_ _ _ _ _ _ _ _| |  _ _|  _ _|_|       |* * * *
31;           |_ _ _ _ _ _ _ _ _| |  _ _|  _|      _ _|* * * *
9, 9;         |_ _ _ _ _ _ _ _ _| | |_ _ _|      _|* * * * * *
39;           |_ _ _ _ _ _ _ _ _ _| |  _ _|    _|* * * * * * *
10, 10;       |_ _ _ _ _ _ _ _ _ _| | |       |* * * * * * * *
42;           |_ _ _ _ _ _ _ _ _ _ _| |  _ _ _|* * * * * * * *
11, 5, 5, 11; |_ _ _ _ _ _ _ _ _ _ _| | |* * * * * * * * * * *
18, 18;       |_ _ _ _ _ _ _ _ _ _ _ _| |* * * * * * * * * * *
12, 12;       |_ _ _ _ _ _ _ _ _ _ _ _| |* * * * * * * * * * *
60;           |_ _ _ _ _ _ _ _ _ _ _ _ _|* * * * * * * * * * *
...
The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n), the sum of all divisors of all positive integers <= n, hence the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n).
For n = 9 the 9th row of A237593 is [5, 2, 2, 2, 2, 5] and the 8th row of A237593 is [5, 2, 1, 1, 2, 5] therefore between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5], so row 9 is [5, 3, 5].
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the sum of the parts of the symmetric representation of sigma(9) is 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
For n = 24 the 24th row of A237593 is [13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13] and the 23rd row of A237593 is [12, 5, 2, 2, 1, 1, 1, 1, 2, 2, 5, 12] therefore between both symmetric Dyck paths there are only one region (or part) of size 60, so row 24 is 60.
The sum of divisors of 24 is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = A000203(24) = 60. On the other hand the sum of the parts of the symmetric representation of sigma(24) is 60, equaling the sum of divisors of 24.
Note that the number of *'s in the diagram is 24^2 - A024916(24) = 576 - 491 = A004125(24) = 85.
From _Omar E. Pol_, Nov 22 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616 (see the theorem).
For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
Starting from A196020 and after the algorithm described in A280850 and A296508 applied to the above diagram we have a new diagram as shown below:
.
Level                             "Ziggurat" diagram
.                                          _
6                                         |1|
7                            _            | |            _
8                          _|1|          _| |_          |1|_
9                        _|1  |         |1   1|         |  1|_
10                     _|1    |         |     |         |    1|_
11                   _|1      |        _|     |_        |      1|_
12                 _|1        |       |1       1|       |        1|_
13               _|1          |       |         |       |          1|_
14             _|1            |      _|    _    |_      |            1|_
15            |1              |     |1    |1|    1|     |              1|
.
The 15th row
of A249351 :  [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of triangle:  [              8,            8,            8              ]
The 15th row
of A296508:   [              8,      7,    1,    0,      8              ]
The 15th row
of A280851    [              8,      7,    1,            8              ]
.
More generally, for n >= 1, it appears there is the same correspondence between the original diagram of the symmetric representation of sigma(n) and the "Ziggurat" diagram of n.
For the definition of subparts see A239387 and also A296508, A280851. (End)
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_] := Ceiling[(n + 1)/k - (k + 1)/2] (* from A235791 *)
    path[n_] := Module[{c = Floor[(Sqrt[8n + 1] - 1)/2], h, r, d, rd, k, p = {{0, n}}}, h = Map[T[n, #] - T[n, # + 1] &, Range[c]]; r = Join[h, Reverse[h]]; d = Flatten[Table[{{1, 0}, {0, -1}}, {c}], 1];
    rd = Transpose[{r, d}]; For[k = 1, k <= 2c, k++, p = Join[p, Map[Last[p] + rd[[k, 2]] * # &, Range[rd[[k, 1]]]]]]; p]
    segments[n_] := SplitBy[Map[Min, Drop[Drop[path[n], 1], -1] - path[n - 1]], # == 0 &]
    a237270[n_] := Select[Map[Apply[Plus, #] &, segments[n]], # != 0 &]
    Flatten[Map[a237270, Range[40]]] (* data *)
    (* Hartmut F. W. Hoft, Jun 23 2014 *)

Formula

T(n, k) = (A384149(n, k) + A384149(n, m+1-k))/2, where m = A237271(n) is the row length. (conjectured) - Peter Munn, Jun 01 2025

Extensions

Drawing of the spiral extended by Omar E. Pol, Nov 22 2020

A237271 Number of parts in the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 1, 3, 2, 4, 1, 2, 1, 2, 1, 4, 2, 3, 1, 2, 2, 4, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 3, 4, 2, 2, 1, 4, 1, 4, 2, 2, 1, 2, 2, 5, 1, 4, 1, 2, 2, 4, 3, 2, 1, 2, 2, 4, 2, 3, 2, 2, 1, 5, 2, 2, 1, 4, 2, 4, 1, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 25 2014

Keywords

Comments

The diagram of the symmetry of sigma has been via A196020 --> A236104 --> A235791 --> A237591 --> A237593.
For more information see A237270.
a(n) is also the number of terraces at n-th level (starting from the top) of the stepped pyramid described in A245092. - Omar E. Pol, Apr 20 2016
a(n) is also the number of subparts in the first layer of the symmetric representation of sigma(n). For the definion of "subpart" see A279387. - Omar E. Pol, Dec 08 2016
Note that the number of subparts in the symmetric representation of sigma(n) equals A001227(n), the number of odd divisors of n. (See the second example). - Omar E. Pol, Dec 20 2016
From Hartmut F. W. Hoft, Dec 26 2016: (Start)
Using odd prime number 3, observe that the 1's in the 3^k-th row of the irregular triangle of A237048 are at index positions
3^0 < 2*3^0 < 3^1 < 2*3^1 < ... < 2*3^((k-1)/2) < 3^(k/2) < ...
the last being 2*3^((k-1)/2) when k is odd and 3^(k/2) when k is even. Since odd and even index positions alternate, each pair (3^i, 2*3^i) specifies one part in the symmetric representation with a center part present when k is even. A straightforward count establishes that the symmetric representation of 3^k, k>=0, has k+1 parts. Since this argument is valid for any odd prime, every positive integer occurs infinitely many times in the sequence. (End)
a(n) = number of runs of consecutive nonzero terms in row n of A262045. - N. J. A. Sloane, Jan 18 2021
Indices of odd terms give A071562. Indices of even terms give A071561. - Omar E. Pol, Feb 01 2021
a(n) is also the number of prisms in the three-dimensional version of the symmetric representation of k*sigma(n) where k is the height of the prisms, with k >= 1. - Omar E. Pol, Jul 01 2021
With a(1) = 0; a(n) is also the number of parts in the symmetric representation of A001065(n), the sum of aliquot parts of n. - Omar E. Pol, Aug 04 2021
The parity of this sequence is also the characteristic function of numbers that have middle divisors. - Omar E. Pol, Sep 30 2021
a(n) is also the number of polycubes in the 3D-version of the ziggurat of order n described in A347186. - Omar E. Pol, Jun 11 2024
Conjecture 1: a(n) is the number of odd divisors of n except the "e" odd divisors described in A005279. Thus a(n) is the length of the n-th row of A379288. - Omar E. Pol, Dec 21 2024
The conjecture 1 was checked up n = 10000 by Amiram Eldar. - Omar E. Pol, Dec 22 2024
The conjecture 1 is true. For a proof see A379288. - Hartmut F. W. Hoft, Jan 21 2025
From Omar E. Pol, Jul 31 2025: (Start)
Conjecture 2: a(n) is the number of 2-dense sublists of divisors of n.
We call "2-dense sublists of divisors of n" to the maximal sublists of divisors of n whose terms increase by a factor of at most 2.
In a 2-dense sublist of divisors of n the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of n.
Example: for n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2], [5, 10], so a(10) = 2.
The conjecture 2 is essentially the same as the second conjecture in the Comments of A384149. See also Peter Munn's formula in A237270.
The indices where a(n) = 1 give A174973 (2-dense numbers). See the proof there. (End)
Conjecture 3: a(n) is the number of divisors p of n such that p is greater than twice the adjacent previous divisor of n. The divisors p give the n-th row of A379288. - Omar E. Pol, Aug 02 2025

Examples

			Illustration of initial terms (n = 1..12):
---------------------------------------------------------
n   A000203  A237270    a(n)            Diagram
---------------------------------------------------------
.                               _ _ _ _ _ _ _ _ _ _ _ _
1       1      1         1     |_| | | | | | | | | | | |
2       3      3         1     |_ _|_| | | | | | | | | |
3       4      2+2       2     |_ _|  _|_| | | | | | | |
4       7      7         1     |_ _ _|    _|_| | | | | |
5       6      3+3       2     |_ _ _|  _|  _ _|_| | | |
6      12      12        1     |_ _ _ _|  _| |  _ _|_| |
7       8      4+4       2     |_ _ _ _| |_ _|_|    _ _|
8      15      15        1     |_ _ _ _ _|  _|     |
9      13      5+3+5     3     |_ _ _ _ _| |      _|
10     18      9+9       2     |_ _ _ _ _ _|  _ _|
11     12      6+6       2     |_ _ _ _ _ _| |
12     28      28        1     |_ _ _ _ _ _ _|
...
For n = 9 the sum of divisors of 9 is 1+3+9 = A000203(9) = 13. On the other hand the 9th set of symmetric regions of the diagram is formed by three regions (or parts) with 5, 3 and 5 cells, so the total number of cells is 5+3+5 = 13, equaling the sum of divisors of 9. There are three parts: [5, 3, 5], so a(9) = 3.
From _Omar E. Pol_, Dec 21 2016: (Start)
Illustration of the diagram of subparts (n = 1..12):
---------------------------------------------------------
n   A000203  A279391  A001227           Diagram
---------------------------------------------------------
.                               _ _ _ _ _ _ _ _ _ _ _ _
1       1      1         1     |_| | | | | | | | | | | |
2       3      3         1     |_ _|_| | | | | | | | | |
3       4      2+2       2     |_ _|  _|_| | | | | | | |
4       7      7         1     |_ _ _|  _ _|_| | | | | |
5       6      3+3       2     |_ _ _| |_|  _ _|_| | | |
6      12      11+1      2     |_ _ _ _|  _| |  _ _|_| |
7       8      4+4       2     |_ _ _ _| |_ _|_|  _ _ _|
8      15      15        1     |_ _ _ _ _|  _|  _| |
9      13      5+3+5     3     |_ _ _ _ _| |  _|  _|
10     18      9+9       2     |_ _ _ _ _ _| |_ _|
11     12      6+6       2     |_ _ _ _ _ _| |
12     28      23+5      2     |_ _ _ _ _ _ _|
...
For n = 6 the symmetric representation of sigma(6) has two subparts: [11, 1], so A000203(6) = 12 and A001227(6) = 2.
For n = 12 the symmetric representation of sigma(12) has two subparts: [23, 5], so A000203(12) = 28 and A001227(12) = 2. (End)
From _Hartmut F. W. Hoft_, Dec 26 2016: (Start)
Two examples of the general argument in the Comments section:
Rows 27 in A237048 and A249223 (4 parts)
i:  1  2 3 4 5 6 7 8 9 . . 12
27: 1  1 1 0 0 1                           1's in A237048 for odd divisors
    1 27 3     9                           odd divisors represented
27: 1  0 1 1 1 0 0 1 1 1 0 1               blocks forming parts in A249223
Rows 81 in A237048 and A249223 (5 parts)
i:  1  2 3 4 5 6 7 8 9 . . 12. . . 16. . . 20. . . 24
81: 1  1 1 0 0 1 0 0 1 0 0 0                          1's in A237048 f.o.d
    1 81 3    27     9                                odd div. represented
81: 1  0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1  blocks fp in A249223
(End)
		

Crossrefs

Programs

  • Mathematica
    a237271[n_] := Length[a237270[n]] (* code defined in A237270 *)
    Map[a237271, Range[90]] (* data *)
    (* Hartmut F. W. Hoft, Jun 23 2014 *)
    a[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, 1 + Count[d, ?(OddQ[#[[2]]] && #[[2]] >= 2*#[[1]] &)]]; Array[a, 100] (* _Amiram Eldar,  Dec 22 2024 *)
  • PARI
    fill(vcells, hga, hgb) = {ic = 1; for (i=1, #hgb, if (hga[i] < hgb[i], for (j=hga[i], hgb[i]-1, cell = vector(4); cell[1] = i - 1; cell[2] = j; vcells[ic] = cell; ic ++;););); vcells;}
    findfree(vcells) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
    findxy(vcells, x, y) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[1]==x) && (vcelli[2]==y) && (vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
    findtodo(vcells, iz) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == iz) && (vcelli[4] == 0), return (i)); ); return (0);}
    zcount(vcells) = {nbz = 0; for (i=1, #vcells, nbz = max(nbz, vcells[i][3]);); nbz;}
    docell(vcells, ic, iz) = {x = vcells[ic][1]; y = vcells[ic][2]; if (icdo = findxy(vcells, x-1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x+1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y-1), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y+1), vcells[icdo][3] = iz); vcells[ic][4] = 1; vcells;}
    docells(vcells, ic, iz) = {vcells[ic][3] = iz; while (ic, vcells = docell(vcells, ic, iz); ic = findtodo(vcells, iz);); vcells;}
    nbzb(n, hga, hgb) = {vcells = vector(sigma(n)); vcells = fill(vcells, hga, hgb); iz = 1; while (ic = findfree(vcells), vcells = docells(vcells, ic, iz); iz++;); zcount(vcells);}
    lista(nn) = {hga = concat(heights(row237593(0), 0), 0); for (n=1, nn, hgb = heights(row237593(n), n); nbz = nbzb(n, hga, hgb); print1(nbz, ", "); hga = concat(hgb, 0););} \\ with heights() also defined in A237593; \\ Michel Marcus, Mar 28 2014
    
  • Python
    from sympy import divisors
    def a(n: int) -> int:
        divs = list(divisors(n))
        d = [divs[i:i+2] for i in range(len(divs) - 1)]
        s = sum(1 for pair in d if len(pair) == 2 and pair[1] % 2 == 1 and pair[1] >= 2 * pair[0])
        return s + 1
    print([a(n) for n in range(1, 80)])  # Peter Luschny, Aug 05 2025

Formula

a(n) = A001227(n) - A239657(n). - Omar E. Pol, Mar 23 2014
a(p^k) = k + 1, where p is an odd prime and k >= 0. - Hartmut F. W. Hoft, Dec 26 2016
Theorem: a(n) <= number of odd divisors of n (cf. A001227). The differences are in A239657. - N. J. A. Sloane, Jan 19 2021
a(n) = A340846(n) - A340833(n) + 1 (Euler's formula). - Omar E. Pol, Feb 01 2021
a(n) = A000005(n) - A243982(n). - Omar E. Pol, Aug 02 2025

A174973 Numbers whose divisors increase by a factor of at most 2.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 72, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252, 256
Offset: 1

Views

Author

T. D. Noe, Apr 02 2010

Keywords

Comments

That is, if the divisors of a number are listed in increasing order, the ratio of adjacent divisors is at most 2. The only odd number in this sequence is 1. Every term appears to be a practical number (A005153). The first practical number not here is 78.
Let p1^e1 * p2^e2 * ... * pr^er be the prime factorization of a number, with primes p1 < p2 < ... < pr and ek > 0. Then the number is in this sequence if and only if pk <= 2*Product_{j < k} p_j^e_j. This condition is similar to, but more restrictive than, the condition for practical numbers.
The polymath8 project led by Terry Tao refers to these numbers as "2-densely divisible". In general they say that n is y-densely divisible if its divisors increase by a factor of y or less, or equivalently, if for every R with 1 <= R <= n, there is a divisor in the interval [R/y,R]. They use this as a weakening of the condition that n be y-smooth. - David S. Metzler, Jul 02 2013
Is this the same as numbers k with the property that the symmetric representation of sigma(k) has only one part? If not, where is the first place these sequences differ? (cf. A237593). - Omar E. Pol, Mar 06 2014
Yes, the sequence so defined is the same as this sequence; see proof in the links. - Hartmut F. W. Hoft, Nov 26 2014
Saias (1997) called these terms "2-dense numbers" and proved that if N(x) is the number of terms not exceeding x, then there are two positive constants c_1 and c_2 such that c_1 * x/log_2(x) <= N(x) <= c_2 * x/log_2(x) for all x >= 2. - Amiram Eldar, Jul 23 2020
Weingartner (2015, 2019) showed that N(x) = c*x/log(x) + O(x/(log(x))^2), where c = 1.224830... As a result, a(n) = C*n*log(n*log(n)) + O(n), where C = 1/c = 0.816439... - Andreas Weingartner, Jun 22 2021

Examples

			The divisors of 12 are 1, 2, 3, 4, 6, 12. The ratios of adjacent divisors is 2, 3/2, 4/3, 3/2, and 2, which are all <= 2. Hence 12 is in this sequence.
Example from _Omar E. Pol_, Mar 06 2014: (Start)
    The symmetric representation of sigma(6) = 12 in the first quadrant looks like this:
   y
   .
   ._ _ _ _
   |_ _ _  |_
   .     |   |_
   .     |_ _  |
   .         | |
   .         | |
   . . . . . |_| . . x
.
6 is in the sequence because the symmetric representation of sigma(6) = 12 has only one part. The 6th row of A237593 is [4, 1, 1, 1, 1, 4] and the 5th row of A237593 is [3, 2, 2, 3] therefore between both symmetric Dyck paths there is only one region (or part) of size 12.
    70 is not in the sequence because the symmetric representation of sigma(70) = 144 has three parts. The 70th row of A237593 is [36, 12, 6, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 6, 12, 36] and the 69th row of A237593 is [35, 12, 7, 4, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 4, 7, 12, 35] therefore between both symmetric Dyck paths there are three regions (or parts) of size [54, 36, 54]. (End)
		

Crossrefs

Subsequence of A196149 and of A071562. A000396 and A000079 are subsequences.
Cf. A027750, A047836, A237593, A365429 (characteristic function).
Column 1 of A240062.
First differs from A103288 and A125225 at a(23). First differs from A005153 at a(24).

Programs

  • Haskell
    a174973 n = a174973_list !! (n-1)
    a174973_list = filter f [1..] where
       f n = all (<= 0) $ zipWith (-) (tail divs) (map (* 2) divs)
             where divs = a027750_row' n
    -- Reinhard Zumkeller, Jun 25 2015, Sep 28 2011
    
  • Magma
    [k:k in [1..260]|forall{i:i in [1..#Divisors(k)-1]|d[i+1]/d[i] le 2 where d is Divisors(k)}]; // Marius A. Burtea, Jan 09 2020
    
  • Maple
    a:= proc() option remember; local k; for k from 1+`if`(n=1, 0,
          a(n-1)) while (l-> ormap(x-> x, [seq(l[i]>l[i-1]*2, i=2..
          nops(l))]))(sort([(numtheory[divisors](k))[]])) do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 27 2018
  • Mathematica
    OK[n_] := Module[{d=Divisors[n]}, And@@(#<=2& /@ (Rest[d]/Most[d]))]; Select[Range[1000], OK]
    dif2Q[n_]:=AllTrue[#[[2]]/#[[1]]&/@Partition[Divisors[n],2,1],#<=2&]; Select[Range[300],dif2Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 29 2020 *)
  • PARI
    is(n)=my(d=divisors(n));for(i=2,#d,if(d[i]>2*d[i-1],return(0)));1 \\ Charles R Greathouse IV, Jul 06 2013
    
  • Python
    from sympy import divisors
    def ok(n):
        d = divisors(n)
        return all(d[i]/d[i-1] <= 2 for i in range(1, len(d)))
    print(list(filter(ok, range(1, 257)))) # Michael S. Branicky, Jun 22 2021

Formula

a(n) = A047836(n) / 2. - Reinhard Zumkeller, Sep 28 2011
a(n) = C*n*log(n*log(n)) + O(n), where C = 0.816439... (see comments). - Andreas Weingartner, Jun 23 2021

Extensions

Edited by N. J. A. Sloane, Sep 09 2023
Edited by Peter Munn, Oct 17 2023

A239660 Triangle read by rows in which row n lists two copies of the n-th row of triangle A237593.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 3, 3, 2, 2, 3, 3, 2, 2, 3, 4, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 4, 4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4, 5, 2, 1, 1, 2, 5, 5, 2, 1, 1, 2, 5, 5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 5, 6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6, 6, 3, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1, 3, 6
Offset: 1

Views

Author

Omar E. Pol, Mar 24 2014

Keywords

Comments

For the construction of this sequence also we can start from A235791.
This sequence can be interpreted as an infinite Dyck path: UDUDUUDD...
Also we use this sequence for the construction of a spiral in which the arms in the quadrants give the symmetric representation of sigma, see example.
We can find the spiral (mentioned above) on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016
The spiral has the property that the sum of the parts in the quadrants 1 and 3, divided by the sum of the parts in the quadrants 2 and 4, converges to 3/5. - Omar E. Pol, Jun 10 2019

Examples

			Triangle begins (first 15.5 rows):
1, 1, 1, 1;
2, 2, 2, 2;
2, 1, 1, 2, 2, 1, 1, 2;
3, 1, 1, 3, 3, 1, 1, 3;
3, 2, 2, 3, 3, 2, 2, 3;
4, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 4;
4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4;
5, 2, 1, 1, 2, 5, 5, 2, 1, 1, 2, 5;
5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 5;
6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6;
6, 3, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1, 3, 6;
7, 2, 2, 1, 1, 2, 2, 7, 7, 2, 2, 1, 1, 2, 2, 7;
7, 3, 2, 1, 1, 2, 3, 7, 7, 3, 2, 1, 1, 2, 3, 7;
8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 1, 2, 2, 1, 3, 8;
8, 3, 2, 1, 1, 1, 1, 2, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
9, 3, 2, 1, 1, 1, 1, 2, 3, 9, ...
.
Illustration of initial terms as an infinite Dyck path (row n = 1..4):
.
.                            /\/\    /\/\
.       /\  /\  /\/\  /\/\  /    \  /    \
.  /\/\/  \/  \/    \/    \/      \/      \
.
.
Illustration of initial terms for the construction of a spiral related to sigma:
.
.  row 1     row 2          row 3           row 4
.                                          _ _ _
.                                               |_
.             _ _                                 |
.   _ _      |                                    |
.  |   |     |                                    |
.            |         |           |              |
.            |_ _      |_         _|              |
.                        |_ _ _ _|               _|
.                                          _ _ _|
.
.[1,1,1,1] [2,2,2,2] [2,1,1,2,2,1,1,2] [3,1,1,3,3,1,1,3]
.
The first 2*A003056(n) terms of the n-th row are represented in the A010883(n-1) quadrant and the last 2*A003056(n) terms of the n-th row are represented in the A010883(n) quadrant.
.
Illustration of the spiral constructed with the first 15.5 rows of triangle:
.
.               12 _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
.                 | |             |_ _ _ _ _ _ _|
.                _| |                           |
.               |_ _|9 _ _ _ _ _ _              |_ _
.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_
.      _ _ _| |      _| |         |_ _ _ _ _|         |
.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
.     | |      _ _| |   12 _ _ _ _          |_  |         | |
.     | |     |  _ _|    _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
.     | |     | |      _|   |     |_ _ _|         | |     | |
.     | |     | |     |  _ _|           |_ _ 3    | |     | |
.     | |     | |     | |    3 _ _        | |     | |     | |
.     | |     | |     | |     |  _|_ 1    | |     | |     | |
.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
.   | |     | |     | |     | |         | |     | |     | |     | |
.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
.   | |     | |     |_|_     2    |_ _ _|    _ _| |     | |     | |
.   | |     | |    4    |_               7 _|  _ _|     | |     | |
.   | |     |_|_ _        |_ _ _ _        |  _|    _ _ _| |     | |
.   | |    6      |_      |_ _ _ _|_ _ _ _| |    _|    _ _|     | |
.   |_|_ _ _        |_   4        |_ _ _ _ _|  _|     |    _ _ _| |
.  8      | |_ _      |                     15|      _|   |  _ _ _|
.         |_    |     |_ _ _ _ _ _            |  _ _|    _| |
.        8  |_  |_    |_ _ _ _ _ _|_ _ _ _ _ _| |      _|  _|
.             |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|
.                 |                             28|  _ _|
.                 |_ _ _ _ _ _ _ _                | |
.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
.                8                |_ _ _ _ _ _ _ _ _|
.                                                    31
.
The diagram contains A237590(16) = 27 parts.
The total area (also the total number of cells) in the n-th arm of the spiral is equal to sigma(n) = A000203(n), considering every quadrant and the axes x and y. (checked by hand up to row n = 128). The parts of the spiral are in A237270: 1, 3, 2, 2, 7...
Diagram extended by _Omar E. Pol_, Aug 23 2018
		

Crossrefs

Row n has length 4*A003056(n).
The sum of row n is equal to 4*n = A008586(n).
Row n is a palindromic composition of 4*n = A008586(n).
Both column 1 and right border are A008619, n >= 1.
The connection between A196020 and A237270 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> this sequence --> A237270.

A239929 Numbers n with the property that the symmetric representation of sigma(n) has two parts.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 67, 68, 71, 73, 74, 76, 78, 79, 82, 83, 86, 89, 92, 94, 97, 101, 102, 103, 106, 107, 109, 113, 114, 116, 118, 122, 124, 127, 131, 134, 136, 137, 138
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2014

Keywords

Comments

All odd primes are in the sequence because the parts of the symmetric representation of sigma(prime(i)) are [m, m], where m = (1 + prime(i))/2, for i >= 2.
There are no odd composite numbers in this sequence.
First differs from A173708 at a(13).
Since sigma(p*q) >= 1 + p + q + p*q for odd p and q, the symmetric representation of sigma(p*q) has more parts than the two extremal ones of size (p*q + 1)/2; therefore, the above comments are true. - Hartmut F. W. Hoft, Jul 16 2014
From Hartmut F. W. Hoft, Sep 16 2015: (Start)
The following two statements are equivalent:
(1) The symmetric representation of sigma(n) has two parts, and
(2) n = q * p where q is in A174973, p is prime, and 2 * q < p.
For a proof see the link and also the link in A071561.
This characterization allows for much faster computation of numbers in the sequence - function a239929F[] in the Mathematica section - than computations based on Dyck paths. The function a239929Stalk[] gives rise to the associated irregular triangle whose columns are indexed by A174973 and whose rows are indexed by A065091, the odd primes. (End)
From Hartmut F. W. Hoft, Dec 06 2016: (Start)
For the respective columns of the irregular triangle with fixed m: k = 2^m * p, m >= 1, 2^(m+1) < p and p prime:
(a) each number k is representable as the sum of 2^(m+1) but no fewer consecutive positive integers [since 2^(m+1) < p].
(b) each number k has 2^m as largest divisor <= sqrt(k) [since 2^m < sqrt(k) < p].
(c) each number k is of the form 2^m * p with p prime [by definition].
m = 1: (a) A100484 even semiprimes (except 4 and 6)
(b) A161344 (except 4, 6 and 8)
(c) A001747 (except 2, 4 and 6)
m = 2: (a) A270298
(b) A161424 (except 16, 20, 24, 28 and 32)
(c) A001749 (except 8, 12, 20 and 28)
m = 3: (a) A270301
(b) A162528 (except 64, 72, 80, 88, 96, 104, 112 and 128)
(c) sequence not in OEIS
b(i,j) = A174973(j) * {1,5) mod 6 * A174973(j), for all i,j >= 1; see A091999 for j=2. (End)

Examples

			From _Hartmut F. W. Hoft_, Sep 16 2015: (Start)
a(23) = 52 = 2^2 * 13 = q * p with q = 4 in A174973 and 8 < 13 = p.
a(59) = 136 = 2^3 * 17 = q * p with q = 8 in A174973 and 16 < 17 = p.
The first six columns of the irregular triangle through prime 37:
   1    2    4    6    8   12 ...
  -------------------------------
   3
   5   10
   7   14
  11   22   44
  13   26   52   78
  17   34   68  102  136
  19   38   76  114  152
  23   46   92  138  184
  29   58  116  174  232  348
  31   62  124  186  248  372
  37   74  148  222  296  444
  ...
(End)
		

Crossrefs

Programs

  • Maple
    isA174973 := proc(n)
        option remember;
        local k,dvs;
        dvs := sort(convert(numtheory[divisors](n),list)) ;
        for k from 2 to nops(dvs) do
            if op(k,dvs) > 2*op(k-1,dvs) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A174973 := proc(n)
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA174973(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    isA239929 := proc(n)
        local i,p,j,a73;
        for i from 1 do
            p := ithprime(i+1) ;
            if p > n then
                return false;
            end if;
            for j from 1 do
                a73 := A174973(j) ;
                if a73 > n then
                    break;
                end if;
                if p > 2*a73 and n = p*a73 then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    for n from 1 to 200 do
        if isA239929(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Oct 04 2018
  • Mathematica
    (* sequence of numbers k for m <= k <= n having exactly two parts *)
    (* Function a237270[] is defined in A237270 *)
    a239929[m_, n_]:=Select[Range[m, n], Length[a237270[#]]==2&]
    a239929[1, 260] (* data *)
    (* Hartmut F. W. Hoft, Jul 07 2014 *)
    (* test for membership in A174973 *)
    a174973Q[n_]:=Module[{d=Divisors[n]}, Select[Rest[d] - 2 Most[d], #>0&]=={}]
    a174973[n_]:=Select[Range[n], a174973Q]
    (* compute numbers satisfying the condition *)
    a239929Stalk[start_, bound_]:=Module[{p=NextPrime[2 start], list={}}, While[start p<=bound, AppendTo[list, start p]; p=NextPrime[p]]; list]
    a239929F[n_]:=Sort[Flatten[Map[a239929Stalk[#, n]&, a174973[n]]]]
    a239929F[138] (* data *)(* Hartmut F. W. Hoft, Sep 16 2015 *)

Formula

Entries b(i, j) in the irregular triangle with rows indexed by i>=1 and columns indexed by j>=1 (alternate indexing of the example):
b(i,j) = A000040(i+1) * A174973(j) where A000040(i+1) > 2 * A174973(j). - Hartmut F. W. Hoft, Dec 06 2016

Extensions

Extended beyond a(56) by Michel Marcus, Apr 07 2014

A239663 a(n) is the smallest number k such that the symmetric representation of sigma(k) has n parts.

Original entry on oeis.org

1, 3, 9, 21, 63, 147, 357, 903, 2499, 6069, 13915, 29095, 59455, 142945, 320045, 643885, 1367465, 3287735, 6779135, 13853015, 30262595, 61773745
Offset: 1

Views

Author

Omar E. Pol, Mar 23 2014

Keywords

Comments

Conjecture 1: where records occur in A237271. - Omar E. Pol, Dec 27 2016
For more information about the symmetric representation of sigma see A237270, A237593.
This sequence of (first occurrence of) parts appears to be strictly increasing in contrast to sequence A250070 of (first occurrence of) maximum widths. - Hartmut F. W. Hoft, Dec 09 2014
Conjecture 2: all terms are odd numbers. - Omar E. Pol, Oct 14 2018
Proof of Conjecture 2: Let n = 2^m * q with m>0 and q odd; then the 1's in even positions of row n in the triangle of A237048 are at positions 2^(m+1) * d <= row(n) where d divides q. For n/2 the even positions of 1's occur at the smaller values 2^m * d <= row(n/2), thus either keeping or reducing widths (A249223) of parts in the symmetric representation of sigma for n/2 inherited from row n. Therefore the number of parts for n is at most as large as for n/2, i.e., all numbers in this sequence are odd. - Hartmut F. W. Hoft, Sep 22 2021
Observation: at least for n = 1..21 we have that 2*a(n) < a(n+1). - Omar E. Pol, Sep 22 2021
From Omar E. Pol, Jul 28 2025: (Start)
Conjecture 3: a(n) is the smallest number k having n 2-dense sublists of divisors of k.
The 2-dense sublists of divisors of k are the maximal sublists whose terms increase by a factor of at most 2.
In a sublist of divisors of k the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of k.
An example of the conjecture 3 for n = 1..5 is as shown below:
----------------------------------------------------
| | List of divisors of k | | |
| k | [with sublists in brackets] | n | a(n) |
----------------------------------------------------
| 1 | [1]; | 1 | 1 |
| 3 | [1], [3]; | 2 | 3 |
| 9 | [1], [3], [9]; | 3 | 9 |
| 21 | [1], [3], [7], [21]; | 4 | 21 |
| 63 | [1], [3], [7, 9], [21], [63]; | 5 | 63 |
(End)
Conjecture 4: a(n) is the smallest number k having n divisors p of k such that p is greater than twice the adjacent previous divisor of k. - Omar E. Pol, Aug 05 2025

Examples

			------------------------------------------------------
n       a(n)     A239665                  A266094(n)
------------------------------------------------------
1        1       [1]                           1
2        3       [2, 2]                        4
3        9       [5, 3, 5]                    13
4       21       [11, 5, 5, 11]               32
5       63       [32, 12, 16, 12, 32]        104
...
For n = 3 the symmetric representation of sigma(9) = 13 contains three parts [5, 3, 5] as shown below:
.
.     _ _ _ _ _ 5
.    |_ _ _ _ _|
.              |_ _ 3
.              |_  |
.                |_|_ _ 5
.                    | |
.                    | |
.                    | |
.                    | |
.                    |_|
.
		

Crossrefs

Programs

  • Mathematica
    (* a239663[] permits computation in intervals *)
    (* Function a237270[] is defined in A237270 *)
    (* variable "list" contains the first occurrences up to m *)
    a239663[list_,{m_, n_}]:=Module[{firsts=list, g=Length[list], i, p}, For[i=m, i<=n, i++, p=Length[a237270[i]]; If[p>g, AppendTo[firsts, i]; g=p]]; firsts]
    a239663[{1}, {1, 1000}] (* computes the first 8 values *)
    (* Hartmut F. W. Hoft, Jul 08 2014 *)
    (* support functions are defined in A341969, A341970 & A341971 *)
    a239663[n_, len_] := Module[{list=Table[0, len], i, v}, For[i=1, i<=n, i+=2, v=Count[a341969[i], 0]+1;If[list[[v]]==0, list[[v]]=i]]; list]
    a239663[62000000,22] (* Hartmut F. W. Hoft, Sep 22 2021 *)

Extensions

a(6)-a(8) from Michel Marcus, Mar 28 2014
a(9) from Michel Marcus, Mar 29 2014
a(10)-a(11) from Michel Marcus, Apr 02 2014
a(12) from Hartmut F. W. Hoft, Jul 08 2014
a(13)-a(18) from Hartmut F. W. Hoft, Dec 09 2014
a(19)-a(22) from Hartmut F. W. Hoft, Sep 22 2021

A280107 Numbers m with the property that the symmetric representation of sigma(m) has four parts.

Original entry on oeis.org

21, 27, 33, 39, 51, 55, 57, 65, 69, 75, 85, 87, 93, 95, 105, 111, 115, 119, 123, 125, 129, 133, 141, 145, 155, 159, 161, 175, 177, 183, 185, 201, 203, 205, 213, 215, 217, 219, 230, 235, 237, 245, 249, 250, 253, 259, 265, 267, 287, 290, 291, 295, 301, 303, 305, 309, 310, 319, 321, 327, 329
Offset: 1

Views

Author

Omar E. Pol, Dec 27 2016

Keywords

Comments

From Hartmut F. W. Hoft, Jan 27 2018: (Start)
Let n = 2^k * t where k >= 0 and t is odd, and let D be the set of divisors of t less than r(n) = floor((sqrt(8*n+1) - 1)/2). The following statements are equivalent:
(1) There is exactly one d in D such that 2^(k+1) * d < e where e in D is the next odd divisor larger than d, and the largest divisor f in D satisfies 2^(k+1) * f <= r(n).
(2) The symmetric representation of sigma(n) consists of four parts.
The property says that the first part of the symmetric representation of n consists of the first 2^(k+1) * d - 1 legs and that the second part starts with leg e and ends with leg 2^(k+1) * f - 1 before or at the middle of the Dyck path (see A237048 and A249223) on the diagonal. Together with their symmetric pair they form the four parts. (End)

Examples

			a(1) = 21 because it is the smallest number n whose symmetric representation of sigma(n) has four parts. Note that the sum of the parts is 11 + 5 + 5 + 11 = 32, equaling the sum of the divisors of 21: aigma(21) = 1 + 3 + 7 + 21 = 32.
From _Hartmut F. W. Hoft_, Jan 27 2018: (Start)
230 = 2*5*23 is the first even number since 2^2 < 5, 2^2 * 5 < 23, and row 230 in A237048 has 20 entries with 1's in positions 1, 4, 5, and 20.
Prime number 3 can be a factor for an even number in this sequence as 12246=2*3*13*157 demonstrates with the four parts 12252, 1020, 1020, and 12252 in the symmetric representation of sigma(12246) defined by 1's in positions 1, 3, 4, 12, 13, 39, 52, 156 in row 12246 of A237048; each of the four parts has maximum width 2 and the two central parts meet on the diagonal at 8492. (End)
		

Crossrefs

Column 4 of A240062.
First differs from A264102 at a(10).
Numbers n such that the symmetric representation of sigma(n) has k parts (k = 1..4): A174973 = A238443, A239929, A279102, this sequence.
Cf. A237270, A237271 (number of parts), A237591, A237593, A239665, A245092, A262626.
Cf. A237048, A249223. - Hartmut F. W. Hoft, Jan 27 2018

Programs

  • Mathematica
    (* Function a237270[] is defined in A237270 *)
    a280107[m_, n_] := Select[Range[m, n], Length[a237270[#]]==4&]
    a280107[1, 329] (* data *)
    (* Implementation of the property in the Comment section *)
    evenPart[n_] := Module[{f=First[FactorInteger[n]]}, If[First[f]!=2, 1, First[f]^Last[f]]]
    fourPartsQ[n_] := Module[{e=evenPart[n], oddPart, r=(Sqrt[8*n + 1] - 1)/2, dL}, oddPart=n/evenPart[n]; dL=Select[Divisors[oddPart], #1, 2*e*Last[dL]<=r && Length[Select[2*e*Most[dL]-Rest[dL], #<0&]]==1, False]];
    Select[Range[329], fourPartsQ] (* data *)
    (* Hartmut F. W. Hoft, Jan 27 2018 *)

A239665 Triangle read by rows in which row n lists the parts of the symmetric representation of sigma of the smallest number whose symmetric representation of sigma has n parts.

Original entry on oeis.org

1, 2, 2, 5, 3, 5, 11, 5, 5, 11, 32, 12, 16, 12, 32, 74, 26, 14, 14, 26, 74, 179, 61, 29, 38, 29, 61, 179, 452, 152, 68, 32, 32, 68, 152, 452, 1250, 418, 182, 152, 100, 152, 182, 418, 1250, 3035, 1013, 437, 342, 85, 85, 342, 437, 1013, 3035, 6958, 1394, 638, 314, 154, 236, 154, 314, 638, 1394, 6958
Offset: 1

Views

Author

Omar E. Pol, Mar 23 2014

Keywords

Comments

Row n is also row A239663(n) of A237270.

Examples

			----------------------------------------------------------------------
n    A239663(n)  Triangle begins:                        A266094(n)
----------------------------------------------------------------------
1        1       [1]                                         1
2        3       [2, 2]                                      4
3        9       [5, 3, 5]                                  13
4       21       [11, 5, 5, 11]                             32
5       63       [32, 12, 16, 12, 32]                      104
6      147       [74, 26, 14, 14, 26, 74]                  228
7      357       [179, 61, 29, 38, 29, 61, 179]            576
8      903       [452, 152, 68, 32, 32, 68, 152, 452]     1408
...
Illustration of initial terms:
.
.     _ _ _ _ _ 5
.    |_ _ _ _ _|
.              |_ _ 3
.              |_  |
.                |_|_ _ 5
.                    | |
.     _ _ 2          | |
.    |_ _|_ 2        | |
.     _ 1| |         | |
.    |_| |_|         |_|
.
For n = 2 we have that A239663(2) = 3 is the smallest number whose symmetric representation of sigma has 2 parts. Row 3 of A237593 is [2, 1, 1, 2] and row 2 of A237593 is [2, 2] therefore between both Dyck paths in the first quadrant there are two regions (or parts) of sizes [2, 2], so row 2 is [2, 2].
For n = 3 we have that A239663(3) = 9 is the smallest number whose symmetric representation of sigma has 3 parts. The 9th row of A237593 is [5, 2, 2, 2, 2, 5] and the 8th row of A237593 is [5, 2, 1, 1, 2, 5] therefore between both Dyck paths in the first quadrant there are three regions (or parts) of sizes [5, 3, 5], so row 3 is [5, 3, 5].
		

Crossrefs

Extensions

a(16)-a(28) from Michel Marcus and Omar E. Pol, Mar 28 2014
a(29)-a(36) from Michel Marcus, Mar 28 2014
a(37)-a(45) from Michel Marcus, Mar 29 2014
a(46)-a(66) from Michel Marcus, Apr 02 2014

A266531 Square array read by antidiagonals upwards: T(n,k) = n-th number with k odd divisors.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 8, 6, 18, 15, 16, 7, 25, 21, 81, 32, 10, 36, 27, 162, 45, 64, 11, 49, 30, 324, 63, 729, 128, 12, 50, 33, 625, 75, 1458, 105, 256, 13, 72, 35, 648, 90, 2916, 135, 225, 512, 14, 98, 39, 1250, 99, 5832, 165, 441, 405, 1024, 17, 100, 42, 1296, 117, 11664, 189, 450, 567, 59049, 2048, 19, 121, 51, 2401, 126, 15625
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2016

Keywords

Comments

T(n,k) is the n-th positive integer with exactly k odd divisors.
This is a permutation of the natural numbers.
T(n,k) is also the n-th number j with the property that the symmetric representation of sigma(j) has k subparts (cf. A279387). - Omar E. Pol, Dec 27 2016
T(n,k) is also the n-th positive integer with exactly k partitions into consecutive parts. - Omar E. Pol, Aug 16 2018

Examples

			The corner of the square array begins:
    1,  3,  9, 15,   81,  45,   729, 105,  225,  405, ...
    2,  5, 18, 21,  162,  63,  1458, 135,  441,  567, ...
    4,  6, 25, 27,  324,  75,  2916, 165,  450,  810, ...
    8,  7, 36, 30,  625,  90,  5832, 189,  882,  891, ...
   16, 10, 49, 33,  648,  99, 11664, 195,  900, 1053, ...
   32, 11, 50, 35, 1250, 117, 15625, 210, 1089, 1134, ...
   64, 12, 72, 39, 1296, 126, 23328, 231, 1225, 1377, ...
  128, 13, 98, 42, 2401, 147, 31250, 255, 1521, 1539, ...
  ...
		

Crossrefs

A384930 Irregular triangle read by rows: T(n,k) is the sum of the terms of the (n-k+1)-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.

Original entry on oeis.org

1, 3, 3, 1, 7, 5, 1, 12, 7, 1, 15, 9, 3, 1, 15, 3, 11, 1, 28, 13, 1, 21, 3, 15, 8, 1, 31, 17, 1, 39, 19, 1, 42, 21, 7, 3, 1, 33, 3, 23, 1, 60, 25, 5, 1, 39, 3, 27, 9, 3, 1, 56, 29, 1, 72, 31, 1, 63, 33, 11, 3, 1, 51, 3, 35, 12, 1, 91, 37, 1, 57, 3, 39, 13, 3, 1, 90, 41, 1, 96, 43, 1, 77, 7, 45, 32, 1
Offset: 1

Views

Author

Omar E. Pol, Jul 19 2025

Keywords

Comments

In a sublist of divisors of n the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of n.
The 2-dense sublists of divisors of n are the maximal sublists whose terms increase by a factor of at most 2.
At least for the first 1000 rows the row lengths coincide with A237271.
Note that if the conjectures related to the 2-dense sublists of divisors of n are true so we have that essentially all sequences where the words "part" or "parts" are mentioned having cf. A237593 are also related to the 2-dense sublists of divisors of n, for example the square array A240062.

Examples

			  ---------------------------------------------------------------------
  |  n |   Row n of       |  List of divisors of n        | Number of |
  |    |   the triangle   |  [with sublists in brackets]  | sublists  |
  ---------------------------------------------------------------------
  |  1 |    1;            |  [1];                         |     1     |
  |  2 |    3;            |  [1, 2];                      |     1     |
  |  3 |    3, 1;         |  [1], [3];                    |     2     |
  |  4 |    7;            |  [1, 2, 4];                   |     1     |
  |  5 |    5, 1;         |  [1], [5];                    |     2     |
  |  6 |   12;            |  [1, 2, 3, 6];                |     1     |
  |  7 |    7, 1;         |  [1], [7];                    |     2     |
  |  8 |   15;            |  [1, 2, 4, 8];                |     1     |
  |  9 |    9, 3, 1;      |  [1], [3], [9];               |     3     |
  | 10 |   15  3;         |  [1, 2], [5, 10];             |     2     |
  | 11 |   11, 1;         |  [1], [11];                   |     2     |
  | 12 |   28;            |  [1, 2, 3, 4, 6, 12];         |     1     |
  | 13 |   13, 1;         |  [1], [13];                   |     2     |
  | 14 |   21, 3;         |  [1, 2], [7, 14];             |     2     |
  | 15 |   15, 8, 1;      |  [1], [3, 5], [15];           |     3     |
  | 16 |   31;            |  [1, 2, 4, 8, 16];            |     1     |
  | 17 |   17, 1;         |  [1], [17];                   |     2     |
  | 18 |   39;            |  [1, 2, 3, 6, 9, 18];         |     1     |
  | 19 |   19, 1;         |  [1], [19];                   |     2     |
  | 20 |   42;            |  [1, 2, 4, 5, 10, 20];        |     1     |
  | 21 |   21, 7, 3, 1;   |  [1], [3], [7], [21];         |     4     |
  | 22 |   33, 3;         |  [1, 2], [11, 22];            |     2     |
  | 23 |   23, 1;         |  [1], [23];                   |     2     |
  | 24 |   60;            |  [1, 2, 3, 4, 6, 8, 12, 24];  |     1     |
   ...
A conjectured relationship between a palindromic composition of sigma_0(n) = A000005(n) as n-th row of A384222 and the list of divisors of n as the n-th row of A027750 and a palindromic composition of sigma_1(n) = A000203(n) as the n-th row of A237270 and the diagram called "symmetric representation of sigma(n)" is as shown below with two examples.
.
For n = 10 the conjectured relationship is:
  10th row of A384222.......................: [   2  ], [   2  ]
  10th row of A027750.......................:   1, 2,     5, 10
  10th row of A027750 with sublists.........: [ 1, 2 ], [ 5, 10]
  10th row of A384149.......................: [   3  ], [  15  ]
  10th row of this triangle.................: [  15  ], [   3  ]
  10th row of the virtual sequence 2*A237270: [  18  ], [  18  ]
  10th row of A237270.......................: [   9  ], [   9  ]
.
The symmetric representation of sigma_1(10) in the first quadrant is as follows:
.
   _ _ _ _ _ _ 9
  |_ _ _ _ _  |
            | |_
            |_ _|_
                | |_ _  9
                |_ _  |
                    | |
                    | |
                    | |
                    | |
                    |_|
.
The diagram has two parts (or polygons) of areas  [9], [9] respectively, so the 10th row of A237270 is [9], [9] and sigma_1(10) = A000203(10) = 18.
.
For n = 15 the conjectured relationship is:
  15th row of A384222.......................: [ 1], [  2  ], [ 1]
  15th row of A027750.......................:   1,    3, 5,   15
  15th row of A027750 with sublists.........: [ 1], [ 3, 5], [15]
  15th row of A384149.......................: [ 1], [  8  ], [15]
  15th row of this triangle.................: [15], [  8  ], [ 1]
  15th row of the virtual sequence 2*A237270: [16], [ 16  ], [16]
  15th row of A237270.......................: [ 8], [  8  ], [ 8]
.
The symmetric representation of sigma_1(15) in the first quadrant is as follows:
.
   _ _ _ _ _ _ _ _ 8
  |_ _ _ _ _ _ _ _|
                  |
                  |_ _
                  |_  |_ 8
                    |   |_
                    |_ _  |
                        |_|_ _ _ 8
                              | |
                              | |
                              | |
                              | |
                              | |
                              | |
                              | |
                              |_|
.
The diagram has three parts (or polygons) of areas [8], [8], [8] respectively, so the 15th row of A237270 is [8], [8], [8] and sigma_1(15) = A000203(15) = 24.
.
For the relationship with Dyck paths, partitions of n into consecutive parts and odd divisors of n see A237593, A235791, A237591 and A379630.
		

Crossrefs

Programs

  • Mathematica
    A384930row[n_] := Reverse[Total[Split[Divisors[n], #2 <= 2*# &], {2}]];
    Array[A384930row, 50] (* Paolo Xausa, Aug 14 2025 *)

Formula

T(n,k) = A384149(n,m+1-k), n >= 1, k >= 1, and m is the length of row n.
T(n,k) = 2*A237270(n,k) - A384149(n,k), n >= 1, k >= 1, (conjectured).
Showing 1-10 of 22 results. Next