A237271
Number of parts in the symmetric representation of sigma(n).
Original entry on oeis.org
1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 1, 3, 2, 4, 1, 2, 1, 2, 1, 4, 2, 3, 1, 2, 2, 4, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 3, 4, 2, 2, 1, 4, 1, 4, 2, 2, 1, 2, 2, 5, 1, 4, 1, 2, 2, 4, 3, 2, 1, 2, 2, 4, 2, 3, 2, 2, 1, 5, 2, 2, 1, 4, 2, 4, 1, 2, 1
Offset: 1
Illustration of initial terms (n = 1..12):
---------------------------------------------------------
n A000203 A237270 a(n) Diagram
---------------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _
1 1 1 1 |_| | | | | | | | | | | |
2 3 3 1 |_ _|_| | | | | | | | | |
3 4 2+2 2 |_ _| _|_| | | | | | | |
4 7 7 1 |_ _ _| _|_| | | | | |
5 6 3+3 2 |_ _ _| _| _ _|_| | | |
6 12 12 1 |_ _ _ _| _| | _ _|_| |
7 8 4+4 2 |_ _ _ _| |_ _|_| _ _|
8 15 15 1 |_ _ _ _ _| _| |
9 13 5+3+5 3 |_ _ _ _ _| | _|
10 18 9+9 2 |_ _ _ _ _ _| _ _|
11 12 6+6 2 |_ _ _ _ _ _| |
12 28 28 1 |_ _ _ _ _ _ _|
...
For n = 9 the sum of divisors of 9 is 1+3+9 = A000203(9) = 13. On the other hand the 9th set of symmetric regions of the diagram is formed by three regions (or parts) with 5, 3 and 5 cells, so the total number of cells is 5+3+5 = 13, equaling the sum of divisors of 9. There are three parts: [5, 3, 5], so a(9) = 3.
From _Omar E. Pol_, Dec 21 2016: (Start)
Illustration of the diagram of subparts (n = 1..12):
---------------------------------------------------------
n A000203 A279391 A001227 Diagram
---------------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _
1 1 1 1 |_| | | | | | | | | | | |
2 3 3 1 |_ _|_| | | | | | | | | |
3 4 2+2 2 |_ _| _|_| | | | | | | |
4 7 7 1 |_ _ _| _ _|_| | | | | |
5 6 3+3 2 |_ _ _| |_| _ _|_| | | |
6 12 11+1 2 |_ _ _ _| _| | _ _|_| |
7 8 4+4 2 |_ _ _ _| |_ _|_| _ _ _|
8 15 15 1 |_ _ _ _ _| _| _| |
9 13 5+3+5 3 |_ _ _ _ _| | _| _|
10 18 9+9 2 |_ _ _ _ _ _| |_ _|
11 12 6+6 2 |_ _ _ _ _ _| |
12 28 23+5 2 |_ _ _ _ _ _ _|
...
For n = 6 the symmetric representation of sigma(6) has two subparts: [11, 1], so A000203(6) = 12 and A001227(6) = 2.
For n = 12 the symmetric representation of sigma(12) has two subparts: [23, 5], so A000203(12) = 28 and A001227(12) = 2. (End)
From _Hartmut F. W. Hoft_, Dec 26 2016: (Start)
Two examples of the general argument in the Comments section:
Rows 27 in A237048 and A249223 (4 parts)
i: 1 2 3 4 5 6 7 8 9 . . 12
27: 1 1 1 0 0 1 1's in A237048 for odd divisors
1 27 3 9 odd divisors represented
27: 1 0 1 1 1 0 0 1 1 1 0 1 blocks forming parts in A249223
Rows 81 in A237048 and A249223 (5 parts)
i: 1 2 3 4 5 6 7 8 9 . . 12. . . 16. . . 20. . . 24
81: 1 1 1 0 0 1 0 0 1 0 0 0 1's in A237048 f.o.d
1 81 3 27 9 odd div. represented
81: 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 blocks fp in A249223
(End)
Cf.
A000203,
A000265,
A001065,
A001227,
A005279,
A024916,
A060831,
A061345,
A067742,
A071561,
A071562,
A175254,
A196020,
A221529,
A235791,
A236104,
A237048,
A237591,
A237593,
A239657,
A244050,
A244971,
A245092,
A249223,
A250068,
A261699,
A262045,
A262612,
A262626,
A274824,
A279387,
A279693,
A319073,
A340583,
A340846,
A342344,
A347186,
A379288.
Cf.
A027750,
A174973 (2-dense numbers),
A239663,
A240062,
A243982,
A379379,
A380580,
A384149,
A384222,
A384225,
A384226,
A384230,
A384930.
-
a237271[n_] := Length[a237270[n]] (* code defined in A237270 *)
Map[a237271, Range[90]] (* data *)
(* Hartmut F. W. Hoft, Jun 23 2014 *)
a[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, 1 + Count[d, ?(OddQ[#[[2]]] && #[[2]] >= 2*#[[1]] &)]]; Array[a, 100] (* _Amiram Eldar, Dec 22 2024 *)
-
fill(vcells, hga, hgb) = {ic = 1; for (i=1, #hgb, if (hga[i] < hgb[i], for (j=hga[i], hgb[i]-1, cell = vector(4); cell[1] = i - 1; cell[2] = j; vcells[ic] = cell; ic ++;););); vcells;}
findfree(vcells) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
findxy(vcells, x, y) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[1]==x) && (vcelli[2]==y) && (vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
findtodo(vcells, iz) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == iz) && (vcelli[4] == 0), return (i)); ); return (0);}
zcount(vcells) = {nbz = 0; for (i=1, #vcells, nbz = max(nbz, vcells[i][3]);); nbz;}
docell(vcells, ic, iz) = {x = vcells[ic][1]; y = vcells[ic][2]; if (icdo = findxy(vcells, x-1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x+1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y-1), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y+1), vcells[icdo][3] = iz); vcells[ic][4] = 1; vcells;}
docells(vcells, ic, iz) = {vcells[ic][3] = iz; while (ic, vcells = docell(vcells, ic, iz); ic = findtodo(vcells, iz);); vcells;}
nbzb(n, hga, hgb) = {vcells = vector(sigma(n)); vcells = fill(vcells, hga, hgb); iz = 1; while (ic = findfree(vcells), vcells = docells(vcells, ic, iz); iz++;); zcount(vcells);}
lista(nn) = {hga = concat(heights(row237593(0), 0), 0); for (n=1, nn, hgb = heights(row237593(n), n); nbz = nbzb(n, hga, hgb); print1(nbz, ", "); hga = concat(hgb, 0););} \\ with heights() also defined in A237593; \\ Michel Marcus, Mar 28 2014
-
from sympy import divisors
def a(n: int) -> int:
divs = list(divisors(n))
d = [divs[i:i+2] for i in range(len(divs) - 1)]
s = sum(1 for pair in d if len(pair) == 2 and pair[1] % 2 == 1 and pair[1] >= 2 * pair[0])
return s + 1
print([a(n) for n in range(1, 80)]) # Peter Luschny, Aug 05 2025
A384222
Irregular triangle read by rows: T(n,k) is the length of the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
Original entry on oeis.org
1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 6, 1, 1, 2, 2, 1, 2, 1, 5, 1, 1, 6, 1, 1, 6, 1, 1, 1, 1, 2, 2, 1, 1, 8, 1, 1, 1, 2, 2, 1, 1, 1, 1, 6, 1, 1, 8, 1, 1, 6, 1, 1, 1, 1, 2, 2, 1, 2, 1, 9, 1, 1, 2, 2, 1, 1, 1, 1, 8, 1, 1, 8, 1, 1, 3, 3, 1, 4, 1, 2, 2, 1, 1, 10, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 3, 1, 1, 8
Offset: 1
----------------------------------------------------------------
| n | Row n of | List of divisors of n | Number of |
| | the triangle | [with sublists in brackets] | sublists |
----------------------------------------------------------------
| 1 | 1; | [1]; | 1 |
| 2 | 2; | [1, 2]; | 1 |
| 3 | 1, 1; | [1], [3]; | 2 |
| 4 | 3; | [1, 2, 4]; | 1 |
| 5 | 1, 1; | [1], [5]; | 2 |
| 6 | 4; | [1, 2, 3, 6]; | 1 |
| 7 | 1, 1; | [1], [7]; | 2 |
| 8 | 4; | [1, 2, 4, 8]; | 1 |
| 9 | 1, 1, 1; | [1], [3], [9]; | 3 |
| 10 | 2, 2; | [1, 2], [5, 10]; | 2 |
| 11 | 1, 1; | [1], [11]; | 2 |
| 12 | 6; | [1, 2, 3, 4, 6, 12]; | 1 |
| 13 | 1, 1; | [1], [13]; | 2 |
| 14 | 2, 2; | [1, 2], [7, 14]; | 2 |
| 15 | 1, 2, 1; | [1], [3, 5], [15]; | 3 |
| 16 | 5; | [1, 2, 4, 8, 16]; | 1 |
| 17 | 1, 1; | [1], [17]; | 2 |
| 18 | 6; | [1, 2, 3, 6, 9, 18]; | 1 |
| 19 | 1, 1; | [1], [19]; | 2 |
| 20 | 6; | [1, 2, 4, 5, 10, 20]; | 1 |
| 21 | 1, 1, 1, 1; | [1], [3], [7], [21]; | 4 |
| 22 | 2, 2; | [1, 2], [11, 22]; | 2 |
| 23 | 1, 1; | [1], [23]; | 2 |
| 24 | 8; | [1, 2, 3, 4, 6, 8, 12, 24]; | 1 |
...
...
For n = 14 the list of divisors of 14 is [1, 2, 7, 14]. There are two sublists of divisors of 14 whose terms increase by a factor of at most 2, they are [1, 2] and [7, 14]. Each sublist has two terms, so the row 14 is [2, 2].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three sublists of divisors of 15 whose terms increase by a factor of at most 2, they are [1], [3, 5], [15]. The number of terms in the sublists are [1, 2, 1] respectively, so the row 15 is [1, 2, 1].
78 is the first practical number A005153 not in A174973. For n = 78 the list of divisors of 78 is [1, 2, 3, 6, 13, 26, 39, 78]. There are two sublists of divisors of 78 whose terms increase by a factor of at most 2, they are [1, 2, 3, 6] and [13, 26, 39, 78]. The number of terms in the sublists are [4, 4] respectively, so the row 78 is [4, 4].
From _Omar E. Pol_, Jul 23 2025: (Start)
A visualization with symmetries of the list of divisors of the first 24 positive integers and the sublists of divisors is as shown below:
---------------------------------------------------------------------------------
| n | List of divisors of n | Number of |
| | [with sublists of divisors in brackets] | sublists |
---------------------------------------------------------------------------------
| 1 | [1] | 1 |
| 2 | [1 2] | 1 |
| 3 | [1] [3] | 2 |
| 4 | [1 2 4] | 1 |
| 5 | [1] [5] | 2 |
| 6 | [1 2 3 6] | 1 |
| 7 | [1] [7] | 2 |
| 8 | [1 2 4 8] | 1 |
| 9 | [1] [3] [9] | 3 |
| 10 | [1 2] [5 10] | 2 |
| 11 | [1] [11] | 2 |
| 12 | [1 2 3 4 6 12] | 1 |
| 13 | [1] [13] | 2 |
| 14 | [1 2] [7 14] | 2 |
| 15 | [1] [3 5] [15] | 3 |
| 16 | [1 2 4 8 16] | 1 |
| 17 | [1] [17] | 2 |
| 18 | [1 2 3 6 9 18] | 1 |
| 19 | [1] [19] | 2 |
| 20 | [1 2 4 5 10 20] | 1 |
| 21 | [1] [3] [7] [21] | 4 |
| 22 | [1 2] [11 22] | 2 |
| 23 | [1] [23] | 2 |
| 24 | [1 2 3 4 6 8 12 24] | 1 |
...
A similar structure show the positive integers in the square array A385000. (End)
Cf.
A000203,
A005153,
A027750,
A174973 (2-dense numbers),
A237271,
A379288,
A384149,
A384225,
A384226,
A384928,
A384930,
A384931,
A385000,
A386984,
A386989,
A387030.
A384225
Irregular triangle read by rows: T(n,k) is the number of odd divisors in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4
Offset: 1
------------------------------------------------------------------
| n | Row n of | List of divisors of n | Number of |
| | the triangle | [with sublists in brackets] | sublists |
------------------------------------------------------------------
| 1 | 1; | [1]; | 1 |
| 2 | 1; | [1, 2]; | 1 |
| 3 | 1, 1; | [1], [3]; | 2 |
| 4 | 1; | [1, 2, 4]; | 1 |
| 5 | 1, 1; | [1], [5]; | 2 |
| 6 | 2; | [1, 2, 3, 6]; | 1 |
| 7 | 1, 1; | [1], [7]; | 2 |
| 8 | 1; | [1, 2, 4, 8]; | 1 |
| 9 | 1, 1, 1; | [1], [3], [9]; | 3 |
| 10 | 1, 1; | [1, 2], [5, 10]; | 2 |
| 11 | 1, 1; | [1], [11]; | 2 |
| 12 | 2; | [1, 2, 3, 4, 6, 12]; | 1 |
| 13 | 1, 1; | [1], [13]; | 2 |
| 14 | 1, 1; | [1, 2], [7, 14]; | 2 |
| 15 | 1, 2, 1; | [1], [3, 5], [15]; | 3 |
| 16 | 1; | [1, 2, 4, 8, 16]; | 1 |
| 17 | 1, 1; | [1], [17]; | 2 |
| 18 | 3; | [1, 2, 3, 6, 9, 18]; | 1 |
| 19 | 1, 1; | [1], [19]; | 2 |
| 20 | 2; | [1, 2, 4, 5, 10, 20]; | 1 |
| 21 | 1, 1, 1, 1; | [1], [3], [7], [21]; | 4 |
...
For n = 14 the list of divisors of 14 is [1, 2, 7, 14]. There are two sublists of divisors of 14 whose terms increase by a factor of at most 2, they are [1, 2] and [7, 14]. Each sublist has only one odd number, so the row 14 is [1, 1].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three sublists of divisors of 15 whose terms increase by a factor of at most 2, they are [1], [3, 5], [15]. The number of odd numbers in the sublists are [1, 2, 1] respectively, so the row 15 is [1, 2, 1].
For n = 16 the list of divisors of 16 is [1, 2, 4, 8, 16]. There is only one sublist of divisors of 16 whose terms increase by a factor of at most 2, that is the same as the list of divisors of 16, which has five terms and only one odd number, so the row 16 is [1].
Cf.
A000203,
A027750,
A174973 (2-dense numbers),
A280940,
A237271,
A379288,
A384149,
A384222,
A384226,
A384928,
A384930,
A384931,
A385000,
A386984,
A386989,
A387030.
-
A384225row[n_] := Map[Count[#, _?OddQ] &, Split[Divisors[n], #2/# <= 2 &]];
Array[A384225row, 50] (* Paolo Xausa, Jul 08 2025 *)
A384928
Number of 2-dense sublists of divisors of the n-th triangular number.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 4, 1, 1, 3, 4, 1, 2, 3, 4, 1, 2, 5, 6, 3, 1, 5, 4, 1, 1, 5, 6, 1, 4, 5, 6, 1, 1, 5, 6, 1, 2, 3, 6, 1, 2, 7, 8, 3, 1, 3, 4, 1, 1, 5, 6, 3, 4, 7, 3, 1, 1, 5, 4, 1, 2, 3, 8, 1, 1, 7, 8, 3, 3, 5, 6, 1, 2, 3, 6, 1, 4, 5, 8, 1, 1, 7, 4, 1, 1, 7, 6, 1, 4, 5, 3, 3, 3, 5, 8, 1, 2, 5, 5, 1, 6
Offset: 0
For n = 5 the 5th triangular number is 15. The list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15], so a(5) = 3.
For n = 12 the 12th triangular number is 78. The list of divisors of 78 is [1, 2, 3, 6, 13, 26, 39, 78]. There are two 2-dense sublists of divisors of 78, they are [1, 2, 3, 6] and [13, 26, 39, 78], so a(12) = 2. Note that 78 is also the first practical number A005153 not in the sequence of the 2-dense numbers A174973.
Cf.
A000217,
A005153,
A174973 (2-dense numbers),
A237271,
A379288,
A384149,
A384222,
A384225,
A384226,
A384930,
A384931,
A386984 (a bisection),
A386989.
-
A384928[n_] := Length[Split[Divisors[PolygonalNumber[n]], #2 <= 2*# &]];
Array[A384928, 100, 0] (* Paolo Xausa, Aug 14 2025 *)
A384931
Number of 2-dense sublists of divisors of the number of partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 2, 3, 2, 1, 1, 1, 3, 2, 3, 1, 5, 6, 4, 4, 5, 1, 2, 4, 3, 4, 1, 5, 4, 7, 2, 4, 9, 10, 4, 9, 2, 6, 9, 3, 1, 9, 4, 11, 8, 4, 3, 3, 8, 12, 4, 11, 7, 10, 5, 3, 7, 2, 2, 1, 8, 5, 6, 8, 5, 2, 1, 3, 10, 6, 1, 6, 8, 7, 1, 1, 4, 2, 7, 9, 3, 4, 9, 6, 2
Offset: 0
For n = 7 the number of partitions of 7 is A000041(7) = 15. The list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15], so a(7) = 3.
For n = 19 the number of partitions of 19 is A000041(19) = 490. The list of divisors of 490 is [1, 2, 5, 7, 10, 14, 35, 49, 70, 98, 245, 490]. There are four 2-dense sublists of divisors of 490, they are [1, 2], [5, 7, 10, 14], [35, 49, 70, 98], [245, 490], so a(19) = 4.
A386984
Number of 2-dense sublists of divisors of the n-th hexagonal number.
Original entry on oeis.org
1, 1, 1, 3, 1, 3, 1, 3, 1, 5, 3, 5, 1, 5, 1, 5, 1, 5, 1, 3, 1, 7, 3, 3, 1, 5, 3, 7, 1, 5, 1, 3, 1, 7, 3, 5, 1, 3, 1, 5, 1, 7, 1, 7, 1, 5, 3, 5, 1, 5, 1, 7, 3, 5, 1, 7, 1, 7, 5, 7, 1, 5, 3, 3, 1, 7, 1, 7, 1, 7, 5, 5, 1, 7, 1, 7, 3, 5, 1, 3, 1, 9, 3, 7, 1, 7, 1, 7, 1, 5, 1, 5, 1, 9, 3, 3, 1, 3, 1, 9, 1
Offset: 0
For n = 3 the third positive hexagonal number is 15. The list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15], so a(3) = 3.
Cf.
A000384,
A174973 (2-dense numbers),
A237271,
A379288,
A384149,
A384222,
A384225,
A384226,
A384930,
A384931,
A386989.
-
A386984[n_] := Length[Split[Divisors[PolygonalNumber[6, n]], #2 <= 2*# &]];
Array[A386984, 100, 0] (* Paolo Xausa, Aug 29 2025 *)
A387030
Irregular triangle read by rows: T(n,k) is the number of primes in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 0, 1, 3, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 2, 0, 2, 0, 1, 1, 1, 0, 1, 1, 0, 2, 0, 1, 3, 0, 1, 1, 1, 0, 2, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1
Offset: 1
Triangle begins:
0;
1;
0, 1;
1;
0, 1;
2;
0, 1;
1;
0, 1, 0;
1, 1;
0, 1;
2;
0, 1;
1, 1;
0, 2, 0;
...
For n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2] and [5, 10]. There is a prime number in each sublist, so row 10 is [1, 1].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15]. Only the second sublist contains primes, so row 15 is [0, 2, 0].
-
A387030row[n_] := Map[Count[#, _?PrimeQ] &, Split[Divisors[n], #2 <= 2*# &]];
Array[A387030row, 50] (* Paolo Xausa, Aug 19 2025 *)
A386989
Irregular triangle read by rows: T(n,k) is the product of terms in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
Original entry on oeis.org
1, 2, 1, 3, 8, 1, 5, 36, 1, 7, 64, 1, 3, 9, 2, 50, 1, 11, 1728, 1, 13, 2, 98, 1, 15, 15, 1024, 1, 17, 5832, 1, 19, 8000, 1, 3, 7, 21, 2, 242, 1, 23, 331776, 1, 5, 25, 2, 338, 1, 3, 9, 27, 21952, 1, 29, 810000, 1, 31, 32768, 1, 3, 11, 33, 2, 578, 1, 35, 35, 10077696, 1, 37, 2, 722, 1, 3, 13, 39, 2560000
Offset: 1
Triangle begins:
1;
2;
1, 3;
8;
1, 5;
36;
1, 7;
64;
1, 3, 9;
2, 50;
...
For n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2] and [5, 10]. The product of terms are 1*2 = 2 and 5*10 = 50 respectively, so the row 10 of the triangle is [2, 50].
Cf.
A174973 (2-dense numbers),
A237271,
A379288,
A384149,
A384222,
A384225,
A384226,
A384928,
A384930,
A384931,
A386984.
A386992
Irregular triangle read by rows: T(n,k) is the number of nonprimes in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
Original entry on oeis.org
1, 1, 1, 0, 2, 1, 0, 2, 1, 0, 3, 1, 0, 1, 1, 1, 1, 0, 4, 1, 0, 1, 1, 1, 0, 1, 4, 1, 0, 4, 1, 0, 4, 1, 0, 0, 1, 1, 1, 1, 0, 6, 1, 0, 1, 1, 1, 1, 0, 1, 1, 4, 1, 0, 5, 1, 0, 5, 1, 0, 0, 1, 1, 1, 1, 0, 1, 7, 1, 0, 1, 1, 1, 0, 0, 1, 6, 1, 0, 5, 1, 0, 2, 2, 1, 2, 1, 1, 1, 1, 0, 8, 1, 0, 1, 1, 1, 2, 1, 0, 0, 1, 2, 2, 1, 0
Offset: 1
Triangle begins:
1;
1;
1, 0;
2;
1, 0;
2;
1, 0;
3;
1, 0, 1;
1, 1;
1, 0;
4;
1, 0;
1, 1;
1, 0, 1;
...
For n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2] and [5, 10]. There is a nonprime number in each sublist, so row 10 is [1, 1].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15]. Only the first and the third sublists contain nonprimes, so row 15 is [1, 0, 1].
Cf.
A018252,
A174973 (2-dense numbers),
A237271,
A379288,
A384149,
A384222,
A384225,
A384226,
A384928,
A384930,
A384931,
A386984,
A386993,
A387030.
-
A386992row[n_] := Map[Count[#, _?(!PrimeQ[#] &)] &, Split[Divisors[n], #2 <= 2*# &]];
Array[A386992row, 50] (* Paolo Xausa, Aug 28 2025 *)
A386993
Number of 2-dense sublists of divisors of the n-th squarefree number.
Original entry on oeis.org
1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 1, 2, 4, 2, 3, 2, 2, 4, 2, 1, 2, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 4, 1, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 2, 4, 2, 4, 2, 3, 4, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 3, 4, 2, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 4, 2, 2, 2, 3, 4, 2, 2, 4, 4, 2, 5, 2, 2, 3, 2
Offset: 1
For n = 11 the 11th squarefree number is 15. The list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15], so a(11) = 3.
Cf.
A005117,
A174973 (2-dense numbers),
A237271,
A379288,
A380328,
A384149,
A384222,
A384225,
A384226,
A384928,
A384930,
A384931,
A386984,
A386992,
A387030.
-
Map[Length[Split[Divisors[#], #2 <= 2*# &]] &, Select[Range[150], SquareFreeQ]] (* Paolo Xausa, Aug 29 2025 *)
Showing 1-10 of 11 results.
Comments