cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386992 Irregular triangle read by rows: T(n,k) is the number of nonprimes in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 0, 2, 1, 0, 3, 1, 0, 1, 1, 1, 1, 0, 4, 1, 0, 1, 1, 1, 0, 1, 4, 1, 0, 4, 1, 0, 4, 1, 0, 0, 1, 1, 1, 1, 0, 6, 1, 0, 1, 1, 1, 1, 0, 1, 1, 4, 1, 0, 5, 1, 0, 5, 1, 0, 0, 1, 1, 1, 1, 0, 1, 7, 1, 0, 1, 1, 1, 0, 0, 1, 6, 1, 0, 5, 1, 0, 2, 2, 1, 2, 1, 1, 1, 1, 0, 8, 1, 0, 1, 1, 1, 2, 1, 0, 0, 1, 2, 2, 1, 0
Offset: 1

Views

Author

Omar E. Pol, Aug 23 2025

Keywords

Comments

In a sublist of divisors of n the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of n.
The 2-dense sublists of divisors of n are the maximal sublists whose terms increase by a factor of at most 2.
It is conjectured that row lengths are given by A237271.

Examples

			Triangle begins:
  1;
  1;
  1, 0;
  2;
  1, 0;
  2;
  1, 0;
  3;
  1, 0, 1;
  1, 1;
  1, 0;
  4;
  1, 0;
  1, 1;
  1, 0, 1;
  ...
For n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2] and [5, 10]. There is a nonprime number in each sublist, so row 10 is [1, 1].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15]. Only the first and the third sublists contain nonprimes, so row 15 is [1, 0, 1].
		

Crossrefs

Programs

  • Mathematica
    A386992row[n_] := Map[Count[#, _?(!PrimeQ[#] &)] &, Split[Divisors[n], #2 <= 2*# &]];
    Array[A386992row, 50] (* Paolo Xausa, Aug 28 2025 *)

Formula

T(n,k) = A384222(n,k) - A387030(n,k).

A386994 Number of 2-dense sublists of divisors of the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 2, 4, 2, 4, 2, 1, 2, 4, 4, 8, 2, 3, 4, 8, 4, 4, 2, 1, 6, 4, 4, 12, 2, 1, 4, 16, 4, 4, 8, 1, 8, 8, 4, 3, 4, 1, 2, 11, 6, 8, 2, 1, 8, 10, 4, 12, 4, 3, 13, 5, 10, 8, 4, 1, 4, 8, 10, 17, 8, 7, 8, 20, 9, 15, 4, 1, 4, 16, 18, 24, 15, 7, 4, 3, 5
Offset: 0

Views

Author

Omar E. Pol, Aug 27 2025

Keywords

Comments

In a sublist of divisors of k the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of k.
The 2-dense sublists of divisors of k are the maximal sublists whose terms increase by a factor of at most 2.

Examples

			For n = 18 the 18th Fibonacci number is 2584. The list of divisors of 2584 is [1, 2, 4, 8, 17, 19, 34, 38, 68, 76, 136, 152, 323, 646, 1292, 2584]. There are three 2-dense sublists of divisors of 2584, they are [1, 2, 4, 8], [17, 19, 34, 38, 68, 76, 136, 152] and [323, 646, 1292, 2584], so a(18) = 3.
		

Crossrefs

Programs

  • Mathematica
    A386994[n_] := Length[Split[Divisors[Fibonacci[n]], #2 <= 2*# &]];
    Array[A386994, 100, 0] (* Paolo Xausa, Sep 02 2025 *)

Formula

a(n) = A237271(A000045(n)), n >= 1. (conjectured).

Extensions

More terms from Alois P. Heinz, Aug 27 2025
Showing 1-2 of 2 results.