A384222
Irregular triangle read by rows: T(n,k) is the length of the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
Original entry on oeis.org
1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 6, 1, 1, 2, 2, 1, 2, 1, 5, 1, 1, 6, 1, 1, 6, 1, 1, 1, 1, 2, 2, 1, 1, 8, 1, 1, 1, 2, 2, 1, 1, 1, 1, 6, 1, 1, 8, 1, 1, 6, 1, 1, 1, 1, 2, 2, 1, 2, 1, 9, 1, 1, 2, 2, 1, 1, 1, 1, 8, 1, 1, 8, 1, 1, 3, 3, 1, 4, 1, 2, 2, 1, 1, 10, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 3, 1, 1, 8
Offset: 1
----------------------------------------------------------------
| n | Row n of | List of divisors of n | Number of |
| | the triangle | [with sublists in brackets] | sublists |
----------------------------------------------------------------
| 1 | 1; | [1]; | 1 |
| 2 | 2; | [1, 2]; | 1 |
| 3 | 1, 1; | [1], [3]; | 2 |
| 4 | 3; | [1, 2, 4]; | 1 |
| 5 | 1, 1; | [1], [5]; | 2 |
| 6 | 4; | [1, 2, 3, 6]; | 1 |
| 7 | 1, 1; | [1], [7]; | 2 |
| 8 | 4; | [1, 2, 4, 8]; | 1 |
| 9 | 1, 1, 1; | [1], [3], [9]; | 3 |
| 10 | 2, 2; | [1, 2], [5, 10]; | 2 |
| 11 | 1, 1; | [1], [11]; | 2 |
| 12 | 6; | [1, 2, 3, 4, 6, 12]; | 1 |
| 13 | 1, 1; | [1], [13]; | 2 |
| 14 | 2, 2; | [1, 2], [7, 14]; | 2 |
| 15 | 1, 2, 1; | [1], [3, 5], [15]; | 3 |
| 16 | 5; | [1, 2, 4, 8, 16]; | 1 |
| 17 | 1, 1; | [1], [17]; | 2 |
| 18 | 6; | [1, 2, 3, 6, 9, 18]; | 1 |
| 19 | 1, 1; | [1], [19]; | 2 |
| 20 | 6; | [1, 2, 4, 5, 10, 20]; | 1 |
| 21 | 1, 1, 1, 1; | [1], [3], [7], [21]; | 4 |
| 22 | 2, 2; | [1, 2], [11, 22]; | 2 |
| 23 | 1, 1; | [1], [23]; | 2 |
| 24 | 8; | [1, 2, 3, 4, 6, 8, 12, 24]; | 1 |
...
...
For n = 14 the list of divisors of 14 is [1, 2, 7, 14]. There are two sublists of divisors of 14 whose terms increase by a factor of at most 2, they are [1, 2] and [7, 14]. Each sublist has two terms, so the row 14 is [2, 2].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three sublists of divisors of 15 whose terms increase by a factor of at most 2, they are [1], [3, 5], [15]. The number of terms in the sublists are [1, 2, 1] respectively, so the row 15 is [1, 2, 1].
78 is the first practical number A005153 not in A174973. For n = 78 the list of divisors of 78 is [1, 2, 3, 6, 13, 26, 39, 78]. There are two sublists of divisors of 78 whose terms increase by a factor of at most 2, they are [1, 2, 3, 6] and [13, 26, 39, 78]. The number of terms in the sublists are [4, 4] respectively, so the row 78 is [4, 4].
From _Omar E. Pol_, Jul 23 2025: (Start)
A visualization with symmetries of the list of divisors of the first 24 positive integers and the sublists of divisors is as shown below:
---------------------------------------------------------------------------------
| n | List of divisors of n | Number of |
| | [with sublists of divisors in brackets] | sublists |
---------------------------------------------------------------------------------
| 1 | [1] | 1 |
| 2 | [1 2] | 1 |
| 3 | [1] [3] | 2 |
| 4 | [1 2 4] | 1 |
| 5 | [1] [5] | 2 |
| 6 | [1 2 3 6] | 1 |
| 7 | [1] [7] | 2 |
| 8 | [1 2 4 8] | 1 |
| 9 | [1] [3] [9] | 3 |
| 10 | [1 2] [5 10] | 2 |
| 11 | [1] [11] | 2 |
| 12 | [1 2 3 4 6 12] | 1 |
| 13 | [1] [13] | 2 |
| 14 | [1 2] [7 14] | 2 |
| 15 | [1] [3 5] [15] | 3 |
| 16 | [1 2 4 8 16] | 1 |
| 17 | [1] [17] | 2 |
| 18 | [1 2 3 6 9 18] | 1 |
| 19 | [1] [19] | 2 |
| 20 | [1 2 4 5 10 20] | 1 |
| 21 | [1] [3] [7] [21] | 4 |
| 22 | [1 2] [11 22] | 2 |
| 23 | [1] [23] | 2 |
| 24 | [1 2 3 4 6 8 12 24] | 1 |
...
A similar structure show the positive integers in the square array A385000. (End)
Cf.
A000203,
A005153,
A027750,
A174973 (2-dense numbers),
A237271,
A379288,
A384149,
A384225,
A384226,
A384928,
A384930,
A384931,
A385000,
A386984,
A386989,
A387030.
A384225
Irregular triangle read by rows: T(n,k) is the number of odd divisors in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4
Offset: 1
------------------------------------------------------------------
| n | Row n of | List of divisors of n | Number of |
| | the triangle | [with sublists in brackets] | sublists |
------------------------------------------------------------------
| 1 | 1; | [1]; | 1 |
| 2 | 1; | [1, 2]; | 1 |
| 3 | 1, 1; | [1], [3]; | 2 |
| 4 | 1; | [1, 2, 4]; | 1 |
| 5 | 1, 1; | [1], [5]; | 2 |
| 6 | 2; | [1, 2, 3, 6]; | 1 |
| 7 | 1, 1; | [1], [7]; | 2 |
| 8 | 1; | [1, 2, 4, 8]; | 1 |
| 9 | 1, 1, 1; | [1], [3], [9]; | 3 |
| 10 | 1, 1; | [1, 2], [5, 10]; | 2 |
| 11 | 1, 1; | [1], [11]; | 2 |
| 12 | 2; | [1, 2, 3, 4, 6, 12]; | 1 |
| 13 | 1, 1; | [1], [13]; | 2 |
| 14 | 1, 1; | [1, 2], [7, 14]; | 2 |
| 15 | 1, 2, 1; | [1], [3, 5], [15]; | 3 |
| 16 | 1; | [1, 2, 4, 8, 16]; | 1 |
| 17 | 1, 1; | [1], [17]; | 2 |
| 18 | 3; | [1, 2, 3, 6, 9, 18]; | 1 |
| 19 | 1, 1; | [1], [19]; | 2 |
| 20 | 2; | [1, 2, 4, 5, 10, 20]; | 1 |
| 21 | 1, 1, 1, 1; | [1], [3], [7], [21]; | 4 |
...
For n = 14 the list of divisors of 14 is [1, 2, 7, 14]. There are two sublists of divisors of 14 whose terms increase by a factor of at most 2, they are [1, 2] and [7, 14]. Each sublist has only one odd number, so the row 14 is [1, 1].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three sublists of divisors of 15 whose terms increase by a factor of at most 2, they are [1], [3, 5], [15]. The number of odd numbers in the sublists are [1, 2, 1] respectively, so the row 15 is [1, 2, 1].
For n = 16 the list of divisors of 16 is [1, 2, 4, 8, 16]. There is only one sublist of divisors of 16 whose terms increase by a factor of at most 2, that is the same as the list of divisors of 16, which has five terms and only one odd number, so the row 16 is [1].
Cf.
A000203,
A027750,
A174973 (2-dense numbers),
A280940,
A237271,
A379288,
A384149,
A384222,
A384226,
A384928,
A384930,
A384931,
A385000,
A386984,
A386989,
A387030.
-
A384225row[n_] := Map[Count[#, _?OddQ] &, Split[Divisors[n], #2/# <= 2 &]];
Array[A384225row, 50] (* Paolo Xausa, Jul 08 2025 *)
A386992
Irregular triangle read by rows: T(n,k) is the number of nonprimes in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
Original entry on oeis.org
1, 1, 1, 0, 2, 1, 0, 2, 1, 0, 3, 1, 0, 1, 1, 1, 1, 0, 4, 1, 0, 1, 1, 1, 0, 1, 4, 1, 0, 4, 1, 0, 4, 1, 0, 0, 1, 1, 1, 1, 0, 6, 1, 0, 1, 1, 1, 1, 0, 1, 1, 4, 1, 0, 5, 1, 0, 5, 1, 0, 0, 1, 1, 1, 1, 0, 1, 7, 1, 0, 1, 1, 1, 0, 0, 1, 6, 1, 0, 5, 1, 0, 2, 2, 1, 2, 1, 1, 1, 1, 0, 8, 1, 0, 1, 1, 1, 2, 1, 0, 0, 1, 2, 2, 1, 0
Offset: 1
Triangle begins:
1;
1;
1, 0;
2;
1, 0;
2;
1, 0;
3;
1, 0, 1;
1, 1;
1, 0;
4;
1, 0;
1, 1;
1, 0, 1;
...
For n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2] and [5, 10]. There is a nonprime number in each sublist, so row 10 is [1, 1].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15]. Only the first and the third sublists contain nonprimes, so row 15 is [1, 0, 1].
Cf.
A018252,
A174973 (2-dense numbers),
A237271,
A379288,
A384149,
A384222,
A384225,
A384226,
A384928,
A384930,
A384931,
A386984,
A386993,
A387030.
-
A386992row[n_] := Map[Count[#, _?(!PrimeQ[#] &)] &, Split[Divisors[n], #2 <= 2*# &]];
Array[A386992row, 50] (* Paolo Xausa, Aug 28 2025 *)
A386993
Number of 2-dense sublists of divisors of the n-th squarefree number.
Original entry on oeis.org
1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 1, 2, 4, 2, 3, 2, 2, 4, 2, 1, 2, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 4, 1, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 2, 4, 2, 4, 2, 3, 4, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 3, 4, 2, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 4, 2, 2, 2, 3, 4, 2, 2, 4, 4, 2, 5, 2, 2, 3, 2
Offset: 1
For n = 11 the 11th squarefree number is 15. The list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15], so a(11) = 3.
Cf.
A005117,
A174973 (2-dense numbers),
A237271,
A379288,
A380328,
A384149,
A384222,
A384225,
A384226,
A384928,
A384930,
A384931,
A386984,
A386992,
A387030.
-
Map[Length[Split[Divisors[#], #2 <= 2*# &]] &, Select[Range[150], SquareFreeQ]] (* Paolo Xausa, Aug 29 2025 *)
A386994
Number of 2-dense sublists of divisors of the n-th Fibonacci number.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 2, 4, 2, 4, 2, 1, 2, 4, 4, 8, 2, 3, 4, 8, 4, 4, 2, 1, 6, 4, 4, 12, 2, 1, 4, 16, 4, 4, 8, 1, 8, 8, 4, 3, 4, 1, 2, 11, 6, 8, 2, 1, 8, 10, 4, 12, 4, 3, 13, 5, 10, 8, 4, 1, 4, 8, 10, 17, 8, 7, 8, 20, 9, 15, 4, 1, 4, 16, 18, 24, 15, 7, 4, 3, 5
Offset: 0
For n = 18 the 18th Fibonacci number is 2584. The list of divisors of 2584 is [1, 2, 4, 8, 17, 19, 34, 38, 68, 76, 136, 152, 323, 646, 1292, 2584]. There are three 2-dense sublists of divisors of 2584, they are [1, 2, 4, 8], [17, 19, 34, 38, 68, 76, 136, 152] and [323, 646, 1292, 2584], so a(18) = 3.
Cf.
A000045,
A133021,
A139045,
A174973 (2-dense numbers),
A237271,
A379288,
A384149,
A384222,
A384225,
A384226,
A384928,
A384930,
A384931,
A386984,
A386992,
A387030,
A386993.
Showing 1-5 of 5 results.
Comments