A328946 Product of primorials of consecutive integers (second definition A034386).
1, 1, 2, 12, 72, 2160, 64800, 13608000, 2857680000, 600112800000, 126023688000000, 291114719280000000, 672475001536800000000, 20194424296150104000000000, 606438561613387623120000000000, 18211350005250030322293600000000000, 546886840657658410578476808000000000000
Offset: 0
Keywords
Examples
a(7) = 1# * 2# * 3# * 4# * 5# * 6# * 7# = 1*2*(2*3)*(2*3)*(2*3*5)*(2*3*5)*(2*3*5*7) = 2^6 * 3^5 * 5^3 * 7^1. Note that in the prime factorization the sum of each prime and its exponent is constant and equal to 7+1 = 8. a(23) = 2^22 * 3^21 * 5^19 * 7^17 * 11^13 * 13^11 * 17^7 * 19^5 * 23^1. Here each prime and its exponent add to 24.
Crossrefs
Product of consecutive elements of A034386.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, [1$2], (p-> (h-> [h, h*p[2]])(`if`(isprime(n), n, 1)*p[1]))(b(n-1))) end: a:= n-> b(n)[2]: seq(a(n), n=0..16); # Alois P. Heinz, Nov 11 2020
-
Mathematica
b[n_] := b[n] = If[n==0, {1, 1}, Function[p, Function[h, {h, h p[[2]]}][If[ PrimeQ[n], n, 1] p[[1]]]][b[n - 1]]]; a[n_] := b[n][[2]]; a /@ Range[0, 16] (* Jean-François Alcover, Nov 30 2020, after Alois P. Heinz *)
-
PARI
primo(n) = lcm(primes([2, n])); \\ A034386 a(n) = prod(k=1, n, primo(k)); \\ Michel Marcus, Nov 01 2019
Formula
Extensions
a(0)=1 prepended by Alois P. Heinz, Nov 11 2020
Comments