A276134 a(5n) = a(n), a(5n+1) = a(5n+2) = a(5n+3) = a(5n+4) = a(n) + 1, a(0) = 0.
0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2
Offset: 0
Examples
The evolution starting with 0 is: 0 -> 01111 -> 0111112222122221222212222 -> ... ... a(0) = 0; a(1) = a(5*0+1) = a(0) + 1 = 1; a(2) = a(5*0+2) = a(0) + 1 = 1; a(3) = a(5*0+3) = a(0) + 1 = 1; a(4) = a(5*0+4) = a(0) + 1 = 1; a(5) = a(5*1+0) = a(1) = 1; a(6) = a(5*1+1) = a(1) + 1 = 2, etc. ... Also a(10) = 1, because 10 (base 10) = 20 (base 5) and 20 has 1 nonzero digit.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Michael Gilleland, Some Self-Similar Integer Sequences
- Ilya Gutkovskiy, Illustration (mapping 0 -> 01111, 1 -> 12222, 2 -> 23333, ...)
Programs
-
Maple
f:= n -> nops(subs(0=NULL,convert(n,base,5))): map(f, [$0..100]); # Robert Israel, Sep 07 2016
-
Mathematica
Join[{0}, Table[IntegerLength[n, 5] - DigitCount[n, 5, 0], {n, 120}]]
Formula
a(5^k) = 1.
a(5^k-1) = k.
a(5^k-m) = k, k>0, m = 2,3,4.
a(5^k+m) = 2, k>0, m = 1,2,3,4.
a(5^k-a(5^k)) = k.
a(5^k+(-1)^k) = (k + (-1)^k*(k - 1) + 3)/2.
a(5^k+(-1)^k-1) = A093178(k).
a(5^k+(-1)^k+1) = A000034(k+1), k>0.
G.f. g(x) satisfies g(x) = (1+x+x^2+x^3+x^4)*g(x^5) + (x+x^2+x^3+x^4)/(1-x^5). - Robert Israel, Sep 07 2016
Comments