cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276136 Numbers m > 1 such that the largest odd divisors of m-1, m, and m+1 are prime.

Original entry on oeis.org

6, 11, 12, 13, 23, 47, 192, 193, 383, 786432
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 22 2016

Keywords

Comments

Conjecture: this sequence is finite.
Any further terms are greater than 10^11. - Charles R Greathouse IV, Aug 22 2016
From Robert Israel, Apr 27 2020: (Start)
Each term is either of the form 3*2^k with 3*2^k-1 and 3*2^k+1 prime, or 3*2^k-1 with 3*2^k-1 prime and 3*2^(k-1)-1 prime, or 3*2^k+1 with 3*2^k+1 prime and 3*2^(k-1)+1 prime.
Any further terms > 10^2000.
(End)

Examples

			6 is in this sequence because the largest odd divisor of 5 is 5, the largest odd divisor of 6 is 3 and the largest odd divisor of 7 is 7, and all three are prime.
		

Crossrefs

Supersequence of A181493. Subsequence of A038550.

Programs

  • Magma
    [n: n in [2..3000000] | NumberOfDivisors(2*(n-1))- NumberOfDivisors(n-1)eq 2 and NumberOfDivisors(2(n))-NumberOfDivisors(n) eq 2 and NumberOfDivisors(2*(n+1))- NumberOfDivisors(n+1) eq 2];
    
  • Maple
    Res:= 6:
    for k from 2  while length(3*2^k-1)<1000 do
      if (isprime(3*2^k-1) and isprime(3*2^(k-1)-1)) then Res:= Res, 3*2^k-1
        fi;
      if (isprime(3*2^k-1) and isprime(3*2^k+1)) then Res:= Res, 3*2^k;
        fi;
      if (isprime(3*2^k+1) and isprime(3*2^(k-1)+1)) then Res:= Res, 3*2^k+1;
        fi;
    od:
    Res; # Robert Israel, Apr 27 2020
  • Mathematica
    Select[Range[2, 10^6], Function[n, Times @@ Boole@ PrimeQ@ Map[First@ Reverse@ DeleteCases[Divisors@ #, d_ /; EvenQ@ d] &, n + Range[-1, 1]] == 1]] (* Michael De Vlieger, Aug 22 2016 *)
    SequencePosition[Table[If[PrimeQ[Max[Select[Divisors[n],OddQ]]],1,0],{n,800000}],{1,1,1}][[;;,1]]+1 (* Harvey P. Dale, Jun 27 2023 *)
  • PARI
    isA038550(n)=isprime(n>>valuation(n,2))
    is(n)=isA038550(n-1) && isA038550(n) && isA038550(n+1) \\ Charles R Greathouse IV, Aug 22 2016
    
  • PARI
    forprime(p=2,1e11, my(a=isA038550(p-1),b=isA038550(p+1)); if(a && isA038550(p-2), print1(p-1", ")); if(a && b, print1(p", ")); if(b && isA038550(p+2), print1(p+1", "))) \\ may print numbers several times, but won't skip numbers; Charles R Greathouse IV, Aug 22 2016

Formula

A038550(a(n-1)) + 1 = A038550(a(n)) = A038550(a(n+1)) - 1.
a(n) >> n log n. - Charles R Greathouse IV, Aug 22 2016