cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276151 n minus the greatest primorial number (A002110) which divides n: a(n) = n - A053589(n).

Original entry on oeis.org

0, 0, 2, 2, 4, 0, 6, 6, 8, 8, 10, 6, 12, 12, 14, 14, 16, 12, 18, 18, 20, 20, 22, 18, 24, 24, 26, 26, 28, 0, 30, 30, 32, 32, 34, 30, 36, 36, 38, 38, 40, 36, 42, 42, 44, 44, 46, 42, 48, 48, 50, 50, 52, 48, 54, 54, 56, 56, 58, 30, 60, 60, 62, 62, 64, 60, 66, 66, 68, 68, 70, 66, 72, 72, 74, 74, 76, 72, 78, 78, 80, 80, 82, 78, 84, 84, 86, 86, 88, 60, 90, 90, 92
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2016

Keywords

Comments

Subtract one (in primorial base representation A049345) from the least significant nonzero digit of n, then convert back to decimal.

Crossrefs

Cf. A002110 (positions of zeros), A032742, A049345, A053589, A111701, A276084, A276085, A276086.

Programs

  • Mathematica
    Table[If[n == 1, 0, n - Times @@ Prime@ Flatten@ Position[TakeWhile[#, # > 0 &], 1] &@ Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> 1 &, f]]@ FactorInteger@ n], {n, 93}] (* or *)
    Table[n - If[OddQ@ n, 1, Function[p, Product[Prime@ k, {k, #[[p]]}]][LengthWhile[Differences@ #, # == 1 &] + 1] &@ PrimePi[FactorInteger[n][[All, 1]]]], {n, 93}] (* Michael De Vlieger, Aug 26 2016 *)
  • Python
    from sympy import nextprime, primepi, primorial
    def a002110(n): return 1 if n<1 else primorial(n)
    def a053669(n):
        p = 2
        while True:
            if n%p!=0: return p
            else: p=nextprime(p)
    def a276084(n): return primepi(a053669(n)) - 1
    def a(n): return n - a002110(a276084(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 23 2017
  • Scheme
    (define (A276151 n) (- n (A053589 n)))
    

Formula

a(n) = n - A053589(n) = n - A002110(A276084(n)).
a(n) = A276085(A032742(A276086(n))). - Antti Karttunen, May 11 2017