A276172 Number of primitive prime divisors of 3^n - 2^n.
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 1, 3, 4, 1, 3, 1, 1, 3, 3, 1, 2, 2, 3, 2, 1, 1, 2, 2, 2, 3, 1, 2, 3, 3, 3, 2, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 3, 2, 4, 1, 3, 4, 3, 2, 2, 5, 3
Offset: 1
Keywords
Examples
a(7) = 2 because 3^7 - 2^7 = 2059 = 29*71 => 29 and 71 do not divide 3^r - 2^r for r < 7: 3^1 - 2^1 = 1; 3^2 - 2^2 = 5; 3^3 - 2^3 = 19; 3^4 - 2^4 = 65 = 5*13; 3^5 - 2^5 = 211; 3^6 - 2^6 = 665 = 5*7*19.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..568
- Eric Weisstein's World of Mathematics, Zsigmondy Theorem.
Programs
-
Maple
f:= n -> nops(select(p -> numtheory:-order(3/2 mod p, p) = n, numtheory:-factorset(3^n-2^n))); map(f, [$1..100]); # Robert Israel, Sep 14 2016
-
Mathematica
nMax=100; pLst={}; Table[f=Transpose[FactorInteger[3^n-2^n]][[1]]; f=Complement[f, pLst]; cnt=Length[f]; pLst=Union[pLst, f]; cnt, {n, 1, nMax}]
Extensions
a(1) corrected by Robert Israel, Sep 14 2016
Comments