cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276178 G.f.: 1/AGM(1, (1-4*x)^2).

Original entry on oeis.org

1, 4, 12, 32, 84, 240, 784, 2816, 10404, 38096, 137456, 493440, 1783376, 6532288, 24245568, 90814464, 341776164, 1289126160, 4870386736, 18439692928, 70004793936, 266551445952, 1017708956224, 3894679004160, 14932998810896, 57349426579264, 220574904103872, 849571289810432
Offset: 0

Views

Author

Gheorghe Coserea, Aug 23 2016

Keywords

Examples

			A(x) = 1 + 4*x + 12*x^2 + 32*x^3 + ... is the g.f.
		

Crossrefs

Programs

  • Mathematica
    a[n_] = DifferenceRoot[Function[{a, n}, {(-80 n^2 - 400n - 512) a[n+1] + (40n^2 + 240n + 368) a[n+2] + (-10n^2 - 70n - 124) a[n+3] + 64(n+2)^2 a[n] + (n+4)^2 a[n+4] == 0, a[0] == 1, a[1] == 4, a[2] == 12, a[3] == 32}]][n];
    Table[a[n], {n, 0, 27}]
    (* or: *)
    Series[1/FunctionExpand[ArithmeticGeometricMean[1, (1-4x)^2], 1-4x > 0], {x, 0, 28}] // CoefficientList[#, x]& (* Jean-François Alcover, Dec 18 2018 *)
  • PARI
    N=34; x='x + O('x^N); Vec(1/agm(1, (1-4*x)^2))

Formula

G.f.: 1/agm(1, (1-4*x)^2).
0 = x*(x+2)*(x+4)*(x^2 + 4*x + 8) * y'' + (5*x^4 + 40*x^3 + 120*x^2 + 160*x + 64) * y' + 4*(x+2)^3 * y, where y(x) = A(x/-8).
From Vaclav Kotesovec, Aug 25 2016: (Start)
Recurrence: n^2*a(n) = 2*(5*n^2 - 5*n + 2)*a(n-1) - 8*(5*n^2 - 10*n + 6)*a(n-2) + 16*(5*n^2 - 15*n + 12)*a(n-3) - 64*(n-2)^2*a(n-4).
a(n) ~ 2^(2*n+2)/(Pi*n).
(End)