A276202 Smallest integer k such that the number of semiprimes in {k, f(k), f(f(k)), ..., 1} is equal to n, where f is the Collatz function.
1, 4, 3, 6, 11, 7, 14, 9, 25, 33, 59, 57, 39, 135, 191, 127, 123, 159, 219, 379, 251, 167, 223, 111, 793, 263, 175, 466, 103, 137, 183, 91, 121, 107, 71, 47, 31, 41, 27, 97, 145, 129, 171, 231, 235, 553, 411, 487, 327, 649, 703, 763, 1519, 1215, 1471, 1071
Offset: 0
Keywords
Examples
a(5)=7 because the trajectory of 7 is 7 -> 22 -> 11 -> 34 -> 17 -> 52 -> 26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 and the 5 semiprimes of this trajectory are 22, 34, 26, 10 and 4.
Links
Programs
-
Mathematica
f[n_]:=n/2/; Mod[n, 2]==0; f[n_]:=3 n+1/; Mod[n, 2]==1; g[n_]:=Module[{i, p}, i=n; p=0; While[i>1, If[PrimeOmega[i]==2, p=p+1]; i=f[i]]; p]; Do[k=1; While[g[k]!=m, k++]; Print[m, " ", k], {m, 0, 53}] nsp[n_]:={n,Count[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&],?(PrimeOmega[#]==2&)]}; Table[SelectFirst[nsp/@Range[2000],#[[2]] == n&],{n,0,59}][[;;,1]] (* _Harvey P. Dale, Mar 29 2025 *)
Comments