cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276248 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,1) or (0,-2) and new values introduced in order 0..2.

Original entry on oeis.org

1, 2, 2, 3, 9, 5, 6, 24, 36, 14, 12, 72, 85, 144, 41, 24, 216, 279, 347, 576, 122, 48, 648, 900, 1447, 1404, 2304, 365, 96, 1944, 2837, 6372, 7316, 5671, 9216, 1094, 192, 5832, 9148, 26325, 43662, 36744, 23000, 36864, 3281, 384, 17496, 29570, 115682, 234431
Offset: 1

Views

Author

R. H. Hardin, Aug 25 2016

Keywords

Comments

Table starts
....1......2.......3........6........12..........24...........48.............96
....2......9......24.......72.......216.........648.........1944...........5832
....5.....36......85......279.......900........2837.........9148..........29570
...14....144.....347.....1447......6372.......26325.......115682.........509750
...41....576....1404.....7316.....43662......234431......1423062........8496628
..122...2304....5671....36744....291113.....2069454.....17450554......141165944
..365...9216...23000...188696...2003694....18671229....219977330.....2410124377
.1094..36864...93204...966555..13727745...167951009...2780927371....41132001645
.3281.147456..377421..4951790..93489265..1509288801..35144231606...700435484735
.9842.589824.1529844.25428687.640009243.13609728840.446083313365.11973407175492

Examples

			Some solutions for n=4 k=4
..0..0..1..1. .0..0..1..2. .0..0..1..1. .0..1..1..2. .0..0..1..2
..1..2..2..1. .2..0..0..1. .2..2..0..1. .2..2..0..0. .2..2..0..1
..0..1..2..2. .1..1..2..2. .0..1..2..2. .1..1..2..2. .1..1..2..2
..2..0..0..1. .0..0..1..2. .0..0..1..1. .2..0..1..1. .2..0..0..2
		

Crossrefs

Column 1 is A007051(n-1).
Column 2 is A002063(n-2).
Row 1 is A003945(n-2).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 4*a(n-1) for n>2
k=3: a(n) = 5*a(n-1) -4*a(n-2) +17*a(n-3) -83*a(n-4) +54*a(n-5) +56*a(n-6) for n>9
k=4: [order 36] for n>37
k=5: [order 41] for n>45
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>3
n=2: a(n) = 3*a(n-1) for n>3
n=3: [order 14] for n>15
n=4: [order 57] for n>60