A276266 a(0) = a(1) = a(2) = 1; for n>2, a(n) = ( a(n-1)*a(n-2) + 1 )^2 / a(n-3).
1, 1, 1, 4, 25, 10201, 16259565169, 1100432328310492581042546436, 31383529740086705883339675381564403354342372463018335778292540655564225
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10
Programs
-
Mathematica
RecurrenceTable[{a[n] == (a[n - 1] a[n - 2] + 1)^2/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 8}] (* Michael De Vlieger, Aug 26 2016 *)
-
Ruby
def A(m, n) a = Array.new(m, 1) ary = [1] while ary.size < n + 1 i = a[1..-1].inject(:*) + 1 i *= i break if i % a[0] > 0 a = *a[1..-1], i / a[0] ary << a[0] end ary end def A276266(n) A(3, n) end
Formula
a(n) = A208209(n)^2.