cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276283 Expansion of (1 + x + 3*x^2 + x^3)/((1 - x)^2*(1 + x^2)).

Original entry on oeis.org

1, 3, 7, 11, 13, 15, 19, 23, 25, 27, 31, 35, 37, 39, 43, 47, 49, 51, 55, 59, 61, 63, 67, 71, 73, 75, 79, 83, 85, 87, 91, 95, 97, 99, 103, 107, 109, 111, 115, 119, 121, 123, 127, 131, 133, 135, 139, 143, 145, 147, 151, 155, 157, 159, 163, 167, 169, 171, 175, 179, 181, 183, 187, 191, 193, 195, 199, 203, 205, 207, 211
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 27 2016

Keywords

Comments

Primes in this sequence: 3, 7, 11, 13, 19, 23, 31, 37, 43, 47, 59, 61, 67, 71, 73, 79, 83, 97, 103, 107, 109, 127, 131, 139, 151, 157, 163, 167, 179, 181, 191, 193, 199, ... (A040116, offset 2).

Crossrefs

Programs

  • Maple
    a:=series((1+x+3*x^2+x^3)/((1-x)^2*(1+x^2)),x=0,71): seq(coeff(a,x,n),n=0..70); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    LinearRecurrence[{2, -2, 2, -1}, {1, 3, 7, 11}, 71]
    Table[3 n - Sin[Pi (n/2)] + 1, {n, 0, 70}]
    Table[(6 n - I ((-I)^n - I^n + 2 I))/2, {n, 0, 70}]
  • PARI
    Vec((1+x+3*x^2+x^3)/((1-x)^2*(1+x^2)) + O(x^99)) \\ Altug Alkan, Aug 27 2016

Formula

O.g.f.: (1 + x + 3*x^2 + x^3)/((1 - x)^2*(1 + x^2)).
E.g.f.: (1 + 3*x)*exp(x) - sin(x).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4).
a(n) = 3*n - sin(Pi*n/2) + 1.
a(n) = (6*n - i*((-i)^n - i^n + 2*i))/2, where i is the imaginary unit.