A276299 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,1) or (0,-1) and new values introduced in order 0..2.
1, 1, 2, 2, 4, 5, 4, 12, 11, 14, 8, 36, 45, 31, 41, 16, 108, 173, 189, 88, 122, 32, 324, 693, 1017, 805, 250, 365, 64, 972, 2765, 5909, 5965, 3437, 710, 1094, 128, 2916, 11061, 33461, 50949, 34865, 14693, 2016, 3281, 256, 8748, 44237, 191289, 408105, 442001
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..0..2. .0..1..2..0. .0..1..0..1. .0..1..0..1. .0..1..0..1 ..0..1..0..1. .2..1..2..1. .0..1..2..1. .0..1..0..1. .0..1..0..2 ..0..2..0..1. .2..1..2..0. .2..1..0..1. .2..1..2..1. .0..2..0..2 ..0..1..0..2. .0..1..2..0. .0..1..2..0. .0..1..0..1. .1..2..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..264
Formula
Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 4*a(n-1) -4*a(n-2) +2*a(n-3) for n>4
k=3: a(n) = 6*a(n-1) -8*a(n-2) +4*a(n-3) -7*a(n-4) +6*a(n-5) for n>7
k=4: [order 11] for n>13
k=5: [order 33] for n>37
k=6: [order 70] for n>75
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>2
n=2: a(n) = 3*a(n-1) for n>2
n=3: a(n) = 4*a(n-1) +a(n-2) -4*a(n-3) for n>4
n=4: a(n) = 4*a(n-1) +10*a(n-2) -6*a(n-4) -22*a(n-5) +15*a(n-6) for n>8
n=5: [order 15] for n>17
n=6: [order 30] for n>32
n=7: [order 59] for n>61
Comments