cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276299 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,1) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 4, 12, 11, 14, 8, 36, 45, 31, 41, 16, 108, 173, 189, 88, 122, 32, 324, 693, 1017, 805, 250, 365, 64, 972, 2765, 5909, 5965, 3437, 710, 1094, 128, 2916, 11061, 33461, 50949, 34865, 14693, 2016, 3281, 256, 8748, 44237, 191289, 408105, 442001
Offset: 1

Views

Author

R. H. Hardin, Aug 28 2016

Keywords

Comments

Table starts
....1.....1.......2........4..........8...........16............32
....2.....4......12.......36........108..........324...........972
....5....11......45......173........693.........2765.........11061
...14....31.....189.....1017.......5909........33461........191289
...41....88.....805.....5965......50949.......408105.......3363533
..122...250....3437....34865.....442001......4988145......59728757
..365...710...14693...203933....3861469.....61239977....1073114625
.1094..2016...62829..1192701...33851605....752660245...19398127957
.3281..5724..268677..6974781..297360321...9254592049..352134188049
.9842.16252.1148973.40786925.2615328377.113817204341.6411366745009

Examples

			Some solutions for n=4 k=4
..0..1..0..2. .0..1..2..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .2..1..2..1. .0..1..2..1. .0..1..0..1. .0..1..0..2
..0..2..0..1. .2..1..2..0. .2..1..0..1. .2..1..2..1. .0..2..0..2
..0..1..0..2. .0..1..2..0. .0..1..2..0. .0..1..0..1. .1..2..0..1
		

Crossrefs

Column 1 is A007051(n-1).
Row 1 is A000079(n-2).
Row 2 is A003946(n-1).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 4*a(n-1) -4*a(n-2) +2*a(n-3) for n>4
k=3: a(n) = 6*a(n-1) -8*a(n-2) +4*a(n-3) -7*a(n-4) +6*a(n-5) for n>7
k=4: [order 11] for n>13
k=5: [order 33] for n>37
k=6: [order 70] for n>75
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>2
n=2: a(n) = 3*a(n-1) for n>2
n=3: a(n) = 4*a(n-1) +a(n-2) -4*a(n-3) for n>4
n=4: a(n) = 4*a(n-1) +10*a(n-2) -6*a(n-4) -22*a(n-5) +15*a(n-6) for n>8
n=5: [order 15] for n>17
n=6: [order 30] for n>32
n=7: [order 59] for n>61