A276306 Number of pairs of integers (k, m) with k < m < n such that (k, m, n) is an abc-triple.
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 3
Keywords
Examples
For n = 81: there are 2 abc-triples for c = 81 with a < b < c, namely (32, 49, 81) and (1, 80, 81), so a(81) = 2.
Links
- Wikipedia, abc conjecture.
Programs
-
Mathematica
rad[a_, b_, c_] := Times @@ FactorInteger[a b c][[All, 1]]; abcTripleQ[a_, b_, c_] := a + b == c && GCD[a, b] == 1 && rad[a, b, c] < c; a[n_] := (For[i = 0; m = 1, m <= n-1, m++, For[k = 1, k <= m-1, k++, If[ abcTripleQ[k, m, n], i++]]]; i); Table[a[n], {n, 3, 89}] (* Jean-François Alcover, Sep 04 2016, partly adapted from PARI *)
-
PARI
rad(x, y, z) = my(f=factor(x*y*z)[, 1]~); prod(i=1, #f, f[i]) is_abc_hit(x, y, z) = z==x+y && gcd(x, y)==1 && rad(x, y, z) < z a(n) = my(i=0); for(m=1, n-1, for(k=1, m-1, if(is_abc_hit(k, m, n), i++))); i
Comments