A276322 Numbers k such that (13*10^k + 83) / 3 is prime.
1, 2, 5, 7, 17, 18, 25, 60, 64, 66, 118, 125, 1021, 1901, 2273, 2524, 6048, 7098, 8281, 11634, 13843, 16098, 18652, 18661, 20570, 32291, 34181, 59928, 65297, 86546
Offset: 1
Examples
5 is in this sequence because (13*10^5 + 83) / 3 = 433361 is prime. Initial terms and associated primes: a(1) = 1, 71; a(2) = 2, 461; a(3) = 5, 433361; a(4) = 7, 43333361; a(5) = 17, 433333333333333361, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 43w61.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(13*10^# + 83) / 3] &]
-
PARI
is(n)=ispseudoprime((13*10^n + 83)/3) \\ Charles R Greathouse IV, Jun 13 2017
Comments