A276325 Diagonal indices of Greedy Queens (see A065188).
0, -1, 2, -2, 1, -3, 4, -4, 3, 6, -5, -6, 5, -7, 8, 7, -8, -9, 10, -10, 9, 12, -11, -12, 11, 13, -13, -14, 15, -15, 16, -16, 17, 14, -17, -18, 19, 18, -19, -20, 21, 22, -21, -22, 23, 20, -23, -24, 24, -25, 25, 26, -26, 27, -27, -28, 29, -29, 30, -30, 28, 31
Offset: 1
Keywords
Examples
The first queen is in the main diagonal, the second queen is in the first lower diagonal, the third queen is in the second upper diagonal, ... : : : Q\\\\ ... : \\\Q\ ... : \Q\\\ ... : \\\\Q ... : \\Q\\ ... : \\\\\ ... : .....
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
# Maple program from N. J. A. Sloane, Oct 03 2016 # To get 10000 terms of A275902 (xx), A275901 (yy), A276783 (ss), -A276325 (dd) M1:=100000; M2:=22000; M3:=10000; xx:=Array(0..M1,0); yy:=Array(0..M1,0); ss:=Array(0..M1,0); dd:=Array(0..M1,0); xx[0]:=0; yy[0]:=0; ss[0]:=0; dd[0]:=0; for n from 1 to M2 do sw:=-1; for s from ss[n-1]+1 to M2 do for i from 0 to s do x:=s-i; y:=i; if not member(x,xx,'p') and not member(y,yy,'p') and not member(x-y,dd,'p') then sw:=1; break; fi; od: # od i if sw=1 then break; fi; od: # od s if sw=-1 then lprint("error, n=",n); break; fi; xx[n]:=x; yy[n]:=y; ss[n]:=x+y; dd[n]:=x-y; od: # od n [seq(xx[i],i=0..M3)]: [seq(yy[i],i=0..M3)]: [seq(ss[i],i=0..M3)]: [seq(dd[i],i=0..M3)]:
Comments