A276326 Numbers expressed in greedy A001563-base.
0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, 40, 41, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 123, 130, 131, 132, 133, 140, 141, 200, 201, 202, 203, 210, 211, 212, 213, 220, 221, 222, 223, 230, 231, 232, 233, 240, 241, 300, 301, 302, 303, 310, 311, 312, 313, 320, 321, 322, 323, 330, 331, 332, 333, 340, 341, 400
Offset: 0
Examples
To recover n from a(n) the digits in positions i = 1, 2, 3, ... (starting indexing from the least significant digit at right) are multiplied by A001563(i) and added together: ---------------- n a(n) ---------------- 0 0 1 1 2 2 3 3 4 10 5 11 6 12 7 13 8 20 9 21 10 22 11 23 12 30 13 31 14 32 15 33 16 40 17 41 (as 4*A001563(2) + 1*A001563(1) = 17) 18 100 (as 1*A001563(3) + 0*A001563(2) + 0*A001563(1) = 18) and: 3225599 99111111 (as 3225599 = 9*b(8) + 9*b(7) + b(6) + b(5) + b(4) + b(3) + b(2) + b(1)), where b(n) = A001563(n).
Links
- Antti Karttunen, Table of n, a(n) for n = 0..4320
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], (# #!) &[# - i]]], {i, 0, # - 1}] &@ NestWhile[# + 1 &, 0, (# #!) &[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[FromDigits@ f@ n, {n, 72}] (* Michael De Vlieger, Aug 31 2016 *)
-
Scheme
(define (A276326 n) (let loop ((n n) (s 0)) (if (zero? n) s (let ((dig (A276333 n))) (if (> dig 9) (error "A276326: ambiguous representation of n, digit > 9 would be needed: " n dig) (loop (A276335 n) (+ s (* dig (expt 10 (- (A258198 n) 1))))))))))
Comments