A276378 Numbers k such that 6*k is squarefree.
1, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 37, 41, 43, 47, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 173, 179, 181, 185, 187, 191, 193, 197, 199, 203, 205, 209, 211
Offset: 1
Examples
5 is in this sequence because 6*5 = 30 = 2*3*5 is squarefree.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[n: n in [1..230] | IsSquarefree(6*n)];
-
Maple
select(numtheory:-issqrfree, [seq(seq(6*i+j,j=[1,5]),i=0..100)]); # Robert Israel, Sep 02 2016
-
Mathematica
Select[Range@ 212, SquareFreeQ[6 #] &] (* Michael De Vlieger, Sep 02 2016 *)
-
PARI
is(n) = issquarefree(6*n) \\ Felix Fröhlich, Sep 02 2016
Formula
{a(n) : n >= 1} = {A003961(A003961(A005117(n))) : n >= 1} = {A003961(A056911(n)) : n >= 1}. - Peter Munn, Nov 20 2020
Sum_{n>=1} 1/a(n)^s = (6^s)*zeta(s)/((1+2^s)*(1+3^s)*zeta(2*s)), s>1. - Amiram Eldar, Sep 26 2023
Comments