cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276414 Index of the first prime which starts a run of n consecutive primes all congruent to each other mod 3 (or mod 6).

Original entry on oeis.org

1, 9, 15, 54, 271, 271, 2209, 11199, 13717, 13717, 34369, 136456, 172146, 1254203, 1254203, 4308948, 12762142, 21357253, 25813464, 25813464, 39500857, 39500857, 947438659, 947438659, 947438659, 5703167678, 5703167678, 16976360924, 57446769091, 57446769091, 57446769091
Offset: 1

Views

Author

M. F. Hasler, Sep 02 2016

Keywords

Comments

First term of runs of increasing length of consecutive integers in A270190. - M. F. Hasler, Sep 03 2016

Examples

			prime(9) = 23 starts the first run of 2 consecutive primes, {23, 29}, which are congruent to each other (mod 6). Therefore a(2) = 9.
prime(15) = 47 starts the first run of 3 consecutive primes, {47, 53, 59}, which are congruent to each other (mod 6). Therefore a(3) = 15.
prime(54) = 251 starts the first run of 4 consecutive primes, {251, 257, 263, 269}, which are congruent to each other (mod 6). Therefore a(4) = 54.
prime(271) = 1741 starts the first run of 5 consecutive primes, {1741, 1747, 1753, 1759, 1777}, which are congruent to each other (mod 6). Therefore a(5) = 271. This is the first case where the primes are of the form 3k+1.
prime(271) = 1741 also starts the first run of 6 consecutive primes, {1741, 1747, 1753, 1759, 1777, 1783}, which are all congruent to each other (mod 6). Therefore a(6) = 271, too.
		

Crossrefs

Subsequence of A270190 (after discarding 1 and duplicates of other terms).

Programs

  • PARI
    m=c=i=o=0;print1(1);forprime(p=1,,i++;(o-o=p)%3&&(!c||!c=0)&&next;c++>m||next;print1(",",i-m=c))

Formula

a(n) = A000720(A054679(n)).

Extensions

a(30)-a(31) from and name clarified by Jinyuan Wang, Feb 24 2020