A276418 Starting a random walk on Z at 0 triangle T(j,k) gives the number of paths of length 2*j returning to 0 exactly k times.
1, 2, 2, 6, 6, 4, 20, 20, 16, 8, 70, 70, 60, 40, 16, 252, 252, 224, 168, 96, 32, 924, 924, 840, 672, 448, 224, 64, 3432, 3432, 3168, 2640, 1920, 1152, 512, 128, 12870, 12870, 12012, 10296, 7920, 5280, 2880, 1152, 256, 48620, 48620, 45760, 40040, 32032, 22880, 14080, 7040, 2560, 512, 184756, 184756, 175032, 155584, 128128, 96096, 64064, 36608, 16896, 5632, 1024
Offset: 0
Examples
Triangle T(j,k) begins: 1 2, 2 6, 6, 4 20, 20, 16, 8 70, 70, 60, 40, 16 252, 252, 224, 168, 96, 32 924, 924, 840, 672, 448, 224, 64 3432, 3432, 3168, 2640, 1920, 1152, 512, 128 12870, 12870, 12012, 10296, 7920, 5280, 2880, 1152, 256 48620, 48620, 45760, 40040, 32032, 22880, 14080, 7040, 2560, 512
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..1325
Programs
-
GAP
Flat(List([0..10],j->List([0..j],k->2^k*Binomial(2*j-k,j-k)))); # Muniru A Asiru, May 18 2018
Comments