cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276418 Starting a random walk on Z at 0 triangle T(j,k) gives the number of paths of length 2*j returning to 0 exactly k times.

Original entry on oeis.org

1, 2, 2, 6, 6, 4, 20, 20, 16, 8, 70, 70, 60, 40, 16, 252, 252, 224, 168, 96, 32, 924, 924, 840, 672, 448, 224, 64, 3432, 3432, 3168, 2640, 1920, 1152, 512, 128, 12870, 12870, 12012, 10296, 7920, 5280, 2880, 1152, 256, 48620, 48620, 45760, 40040, 32032, 22880, 14080, 7040, 2560, 512, 184756, 184756, 175032, 155584, 128128, 96096, 64064, 36608, 16896, 5632, 1024
Offset: 0

Views

Author

Franz Vrabec, Sep 27 2016

Keywords

Comments

The number of paths of odd length 2*j+1 is the same as the number of even length 2*j (returning to 0 exactly k times).

Examples

			Triangle T(j,k) begins:
      1
      2,     2
      6,     6,     4
     20,    20,    16,     8
     70,    70,    60,    40,    16
    252,   252,   224,   168,    96,    32
    924,   924,   840,   672,   448,   224,    64
   3432,  3432,  3168,  2640,  1920,  1152,   512,  128
  12870, 12870, 12012, 10296,  7920,  5280,  2880, 1152,  256
  48620, 48620, 45760, 40040, 32032, 22880, 14080, 7040, 2560, 512
		

Programs

  • GAP
    Flat(List([0..10],j->List([0..j],k->2^k*Binomial(2*j-k,j-k)))); # Muniru A Asiru, May 18 2018

Formula

T(j,k) = (2^k)*C(2*j-k,j-k).
T(j,0) = T(j,1) for j>0.
T(j,0) = A000984(j).
T(j,1) = A000984(j) for j>0.
T(j,2) = A128650(j+1).
T(j,j) = A000079(j).
T(j,j-1) = A057711(j+1) for j>0.