cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276420 Number of palindromic compositions of n into prime parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 5, 6, 8, 7, 12, 14, 16, 17, 26, 27, 36, 40, 55, 56, 81, 88, 118, 124, 177, 189, 257, 275, 384, 404, 564, 605, 833, 880, 1233, 1314, 1813, 1929, 2685, 2850, 3956, 4215, 5845, 6203, 8629, 9185, 12731, 13531, 18807, 19994
Offset: 0

Views

Author

Emeric Deutsch, Sep 02 2016

Keywords

Examples

			a(9) = 2 because we have [2,5,2] and [3,3,3].
a(12) = 5 because we have [5,2,5], [2,3,2,3,2], [3,2,2,2,3], [3,3,3,3], and [2,2,2,2,2,2].
		

Crossrefs

Programs

  • Maple
    F := sum(z^ithprime(j),j=1..90): F2:=sum(z^(2*ithprime(j)),j=1..90): g:= (1+F)/(1-F2): gser:=series(g,z=0,55): seq(coeff(gser,z,n),n=0..50);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0 or isprime(n), 1, 0)+
          add(`if`(isprime(j), a(n-2*j), 0), j=1..n/2)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 02 2016
  • Mathematica
    Table[Count[Flatten[Map[Permutations, Select[IntegerPartitions@ n, Times @@ Boole@ Map[PrimeQ, #] > 0 &]], 1], w_ /; Reverse@ w == w], {n, 0, 40}] (* Michael De Vlieger, Sep 02 2016 *)
    a[n_] := a[n] = If[n == 0 || PrimeQ[n], 1, 0] +
         Sum[If[PrimeQ[j], a[n - 2*j], 0], {j, 1, n/2}];
    a /@ Range[0, 60] (* Jean-François Alcover, Jun 01 2021, after Alois P. Heinz *)

Formula

G.f.: g(z) = (1+F(z))/(1-F(z^2)), where F(z) = Sum_{p prime} z^p = z^2 + z^3 + z^5 + z^7 + ... .