A276424 Triangle read by rows: T(n,k) is the number of partitions of n for which the sum of its even singletons is k (0<=k<=n). A singleton in a partition is a part that occurs exactly once.
1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 0, 1, 4, 0, 2, 0, 1, 0, 6, 0, 2, 0, 1, 0, 2, 8, 0, 3, 0, 2, 0, 2, 0, 11, 0, 4, 0, 3, 0, 2, 0, 2, 15, 0, 5, 0, 4, 0, 4, 0, 2, 0, 19, 0, 7, 0, 6, 0, 5, 0, 2, 0, 3, 25, 0, 9, 0, 8, 0, 7, 0, 4, 0, 3, 0, 34, 0, 11, 0, 10, 0, 10, 0, 5, 0, 3, 0, 4
Offset: 0
Examples
Row 4 is 3, 0, 1, 0, 1 because in the partitions [1,1,1,1], [1,1,2], [2,2], [1,3], [4] the sums of the even singletons are 0, 2, 0, 0, 4, respectively. Row 5 is 4, 0, 2, 0, 1, 0 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5] the sums of the even singletons are 0, 2, 0, 0, 2, 4, 0, respectively. Triangle starts: 1; 1,0; 1,0,1; 2,0,1,0; 3,0,1,0,1; 4,0,2,0,1,0; 6,0,2,0,1,0,2.
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
g := Product(((1-x^(2*j))*(1+t^(2*j)*x^(2*j))+x^(4*j))/(1-x^j), j = 1 .. 100): gser := simplify(series(g, x = 0, 23)): for n from 0 to 20 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 20 do seq(coeff(P[n], t, i), i = 0 .. n) end do; # yields sequence in triangular form # second Maple program: b:= proc(n, i) option remember; expand( `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)* `if`(j=1 and i::even, x^i, 1), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)): seq(T(n), n=0..14); # Alois P. Heinz, Sep 14 2016
-
Mathematica
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*If[j == 1 && EvenQ[i], x^i, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 11 2016, after Alois P. Heinz *)
Formula
G.f.: G(t,x) = Product_{j>=1} ((1-x^(2*j))*(1+t^(2*j)*x^(2*j)) + x^(4*j))/(1-x^j).
Comments