A276428 Sum over all partitions of n of the number of distinct parts i of multiplicity i.
0, 1, 0, 1, 2, 3, 3, 6, 7, 12, 15, 22, 27, 40, 49, 68, 87, 116, 145, 193, 239, 311, 387, 494, 611, 776, 952, 1193, 1464, 1817, 2214, 2733, 3315, 4060, 4911, 5974, 7195, 8713, 10448, 12585, 15048, 18039, 21486, 25660, 30462, 36231, 42888, 50820, 59972, 70843, 83354
Offset: 0
Keywords
Examples
a(5) = 3 because in the partitions [1,1,1,1,1], [1,1,1,2], [1',2',2], [1,1,3], [2,3], [1',4], [5] of 5 only the marked parts satisfy the requirement.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..7500 (terms 0..1000 from Alois P. Heinz)
- Philip Cuthbertson, David J. Hemmer, Brian Hopkins, and William J. Keith, Partitions with fixed points in the sequence of first-column hook lengths, arXiv:2401.06254 [math.CO], 2024.
Programs
-
Maple
g := (sum(x^(i^2)*(1-x^i), i = 1 .. 200))/(product(1-x^i, i = 1 .. 200)): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add((p-> p+`if`(i<>j, 0, [0, p[1]]))(b(n-i*j, i-1)), j=0..n/i))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..60); # Alois P. Heinz, Sep 19 2016
-
Mathematica
b[n_, i_] := b[n, i] = Expand[If[n==0, 1, If[i<1, 0, Sum[If[i==j, x, 1]*b[n - i*j, i-1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; a[n_] := (row = T[n]; row.Range[0, Length[row]-1]); Table[a[n], {n, 0, 60}] // Flatten (* Jean-François Alcover, Nov 28 2016, after Alois P. Heinz's Maple code for A276427 *)
-
PARI
apply( A276428(n,s,c)={forpart(p=n,c=1;for(i=1,#p,p[i]==if(i<#p, p[i+1])&&c++&&next; c==p[i]&&s++; c=1));s}, [0..20]) \\ M. F. Hasler, Oct 27 2019
Formula
a(n) = Sum_{k>=0} k*A276427(n,k).
G.f.: g(x) = Sum_{i>=1} (x^{i^2}*(1-x^i))/Product_{i>=1} (1-x^i).