cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276429 Number of partitions of n containing no part i of multiplicity i.

Original entry on oeis.org

1, 0, 2, 2, 3, 5, 8, 9, 16, 19, 29, 36, 53, 65, 92, 115, 154, 195, 257, 318, 419, 516, 663, 821, 1039, 1277, 1606, 1963, 2441, 2978, 3675, 4454, 5469, 6603, 8043, 9688, 11732, 14066, 16963, 20260, 24310, 28953, 34586, 41047, 48857, 57802, 68528, 80862, 95534, 112388, 132391
Offset: 0

Views

Author

Emeric Deutsch, Sep 19 2016

Keywords

Comments

The Heinz numbers of these partitions are given by A325130. - Gus Wiseman, Apr 02 2019

Examples

			a(4) = 3 because we have [1,1,1,1], [1,1,2], and [4]; the partitions [1,3], [2,2] do not qualify.
From _Gus Wiseman_, Apr 02 2019: (Start)
The a(2) = 2 through a(7) = 9 partitions:
  (2)   (3)    (4)     (5)      (6)       (7)
  (11)  (111)  (211)   (32)     (33)      (43)
               (1111)  (311)    (42)      (52)
                       (2111)   (222)     (511)
                       (11111)  (411)     (3211)
                                (3111)    (4111)
                                (21111)   (31111)
                                (111111)  (211111)
                                          (1111111)
(End)
		

Crossrefs

Programs

  • Maple
    g := product(1/(1-x^i)-x^(i^2), i = 1 .. 100): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(i=j, 0, b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 19 2016
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[If[i == j, x, 1]*b[n - i*j, i - 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n][[1]], {n, 0, 60}] (* Jean-François Alcover, Nov 28 2016 after Alois P. Heinz's Maple code for A276427 *)
    Table[Length[Select[IntegerPartitions[n],And@@Table[Count[#,i]!=i,{i,Union[#]}]&]],{n,0,30}] (* Gus Wiseman, Apr 02 2019 *)

Formula

a(n) = A276427(n,0).
G.f.: g(x) = Product_{i>=1} (1/(1-x^i) - x^{i^2}).