cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276431 Number of partitions of n containing no parts that are powers of 2 with positive exponent.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 7, 10, 13, 16, 22, 27, 33, 43, 52, 64, 81, 98, 120, 148, 178, 215, 263, 315, 377, 455, 541, 644, 771, 912, 1078, 1279, 1506, 1772, 2089, 2447, 2864, 3356, 3916, 4563, 5320, 6180, 7171, 8324, 9633, 11136, 12874, 14845, 17102, 19696
Offset: 0

Views

Author

Emeric Deutsch, Sep 19 2016

Keywords

Examples

			a(6) = 5, counting [1,1,1,1,1,1], [1,1,1,3], [1,5], [3,3], [6].
		

Crossrefs

Cf. A276430.

Programs

  • Maple
    h:= proc(i) options operator, arrow: 2^i end proc: g := product((1-x^h(i))/(1-x^i), i = 1 .. 55): gser := series(g, x = 0, 55): seq(coeff(gser, x, n), n = 0 .. 50);
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d>1 and
          d=2^ilog2(d), 0, a(n-j)*d), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..55);  # Alois P. Heinz, Sep 20 2016
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[d>1 && d == 2^Floor[Log[2, d]], 0, a[n-j]*d], {d, Divisors[j]}], {j, 1, n}]/n]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)

Formula

a(n) = A276430(n,0).
G.f.: g(x) = Product_{i>=1} (1-x^{h(i)})/(1-x^i), where h(i) = 2^i.