A276431 Number of partitions of n containing no parts that are powers of 2 with positive exponent.
1, 1, 1, 2, 2, 3, 5, 6, 7, 10, 13, 16, 22, 27, 33, 43, 52, 64, 81, 98, 120, 148, 178, 215, 263, 315, 377, 455, 541, 644, 771, 912, 1078, 1279, 1506, 1772, 2089, 2447, 2864, 3356, 3916, 4563, 5320, 6180, 7171, 8324, 9633, 11136, 12874, 14845, 17102, 19696
Offset: 0
Keywords
Examples
a(6) = 5, counting [1,1,1,1,1,1], [1,1,1,3], [1,5], [3,3], [6].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A276430.
Programs
-
Maple
h:= proc(i) options operator, arrow: 2^i end proc: g := product((1-x^h(i))/(1-x^i), i = 1 .. 55): gser := series(g, x = 0, 55): seq(coeff(gser, x, n), n = 0 .. 50); # second Maple program: with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d>1 and d=2^ilog2(d), 0, a(n-j)*d), d=divisors(j)), j=1..n)/n) end: seq(a(n), n=0..55); # Alois P. Heinz, Sep 20 2016
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[d>1 && d == 2^Floor[Log[2, d]], 0, a[n-j]*d], {d, Divisors[j]}], {j, 1, n}]/n]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
Formula
a(n) = A276430(n,0).
G.f.: g(x) = Product_{i>=1} (1-x^{h(i)})/(1-x^i), where h(i) = 2^i.