A276450 Number of points of norm <= n in the bi-truncated cubic honeycomb (3-dimensional lattice, with truncated-octahedral cells).
1, 9, 59, 169, 339, 641, 1075, 1617, 2381, 3355, 4533, 5939, 7645, 9651, 11933, 14581, 17631, 21053, 24871, 29109, 33863, 39061, 44775, 51023, 57817, 65247, 73193, 81847, 91113, 101063, 111691, 123081, 135155, 148081, 161763, 176249, 191611, 207777, 224861, 242899, 261837, 281627, 302653, 324555, 347405, 371389, 396495
Offset: 0
Keywords
Examples
The origin has norm 0, so a(0)=1. Each cell has eight closest neighbors, touching along hexagonal faces. So a(1)=9.
Links
- Yuriy Sibirmovsky, Table of n, a(n) for n = 0..100
- N. G. Khlebtsov, T-matrix method in plasmonics: An overview, J. Quantitative Spectroscopy & Radiative Transfer 123 (2013) 184-217.
- Yuriy Sibirmovsky, Coordinate axes and the cell arrangement.
- Wikipedia, Bitruncated cubic honeycomb.
Crossrefs
Cf. A000605 (cubic lattice).
Programs
-
Mathematica
rm=20; CanonForm[A_]:=A-Min[A[[1]],A[[2]],A[[3]],A[[4]]]{1,1,1,1}; NormSq[A_]:=A[[1]]^2 + A[[2]]^2 + A[[3]]^2 + A[[4]]^2 - 2/3(A[[1]]A[[2]] + A[[2]]A[[3]] + A[[3]]A[[4]] + A[[4]]A[[1]] + A[[1]]A[[3]] + A[[2]]A[[4]]); Do[S=0; Do[A={j,k,l,m}; If[A-CanonForm[A]=={0,0,0,0}&&NormSq[A]<=r^2,S+=1],{j,0,r},{k,0,r},{l,0,r},{m,0,r}]; Print[r," ",S],{r,0,rm}]
Comments