A276452 Number of 4-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.
0, 1, 20, 448, 13266, 486744, 21474640, 1106532352, 65221935740, 4327576834420, 319187489891256, 25904823417117120, 2294089575084464472, 220132629092378694832, 22751391952785312551232, 2519687900505221042995200, 297684761086121821704009432, 37370623083548749203599933004
Offset: 1
Examples
a(2) = 1: the 4-orbit is + + o + o o + o o o o + + + + o , and one can take the first one as representative. For n = 3 there are a(3) = 20 4-orbits, represented by + + + + + o + + o + + o + + o o o o + o o o + o o o + o o o o o o o o o o o o o o o + o o -------------------------------------- + + o + + o + o + + o + + o + o o o o o o + o o o + o o o o o + o o o + o o o o o o + o o -------------------------------------- + o + + o o + o o + o o + o o o o o + + o + o + + o o + o o o + o o o o o o o o + o o o + -------------------------------------- + o o + o o + o o o + o o + o o + + o + o o o + + + o + o + o o o o + o o + o o o o o o o . -------------------------------------- The complete orbit structure for n=3 is 1^0 2^2 4^20, see A276449(3) = 0, A276451(3) = 2, a(3) = 20
Links
- Hong-Chang Wang, Table of n, a(n) for n = 1..69
Programs
-
Mathematica
f[n_] := If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4]; g[n_] := (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2; Table[(Binomial[n^2, n] - 2 g@ n - f@ n)/4, {n, 18}] (* Michael De Vlieger, Sep 07 2016 *)
-
Python
import math def nCr(n,r): f = math.factorial return f(n) / f(r) / f(n-r) # main program for j in range(101): a = nCr(j*j,j) i = j/2 if j%2==0: b = nCr(2*i*i,i) else: b = nCr(2*i*(i+1),i) print(str(j)+" "+str((a-b)/4))
Comments