A276470 Numbers k such that (25*10^k + 167) / 3 is prime.
1, 3, 4, 5, 11, 15, 18, 37, 41, 58, 60, 87, 117, 118, 214, 265, 334, 355, 450, 655, 1695, 1734, 2183, 3913, 25313, 32865
Offset: 1
Examples
3 is in this sequence because (25*10^3 + 167) / 3 = 8389 is prime. Initial terms and associated primes: a(1) = 1, 139; a(2) = 3, 8389 a(3) = 4, 83389; a(4) = 5, 833389; a(5) = 11, 833333333389, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 83w89.
Programs
-
Magma
[n: n in [0..400] |IsPrime((25*10^n + 167) div 3)]; // Vincenzo Librandi, Sep 13 2016
-
Mathematica
Select[Range[0, 100000], PrimeQ[(25*10^# + 167) / 3] &]
-
PARI
is(n)=ispseudoprime((25*10^n + 167)/3) \\ Charles R Greathouse IV, Jun 13 2017
Comments