A276494 Decimal expansion of the sum of the alternating series of reciprocals of squares of composite numbers.
0, 4, 3, 9, 0, 8, 9, 6, 3, 3, 5, 1, 3, 0, 8
Offset: 1
Examples
Equals 0.04390896... From _Jon E. Schoenfield_, Feb 02 2018: (Start) Let S'(j) = -(Sum_{m=1..j-1} (-1)^m/A002808(m)^2 + (1/2)*(-1)^j/A002808(j)^2) and let c_k be the smallest odd composite > 2^k; S'(c_k) quickly converges to a limit, as illustrated below: k c_k S'(c_k) == ======== =============================== 3 9 0.04417438271604938271604938... 4 21 0.04390073853615520282186948... 5 33 0.04390758368090798391978693... 6 65 0.04390888269964319809070094... 7 129 0.04390902395888932501501797... 8 259 0.04390896620540588616012725... 9 513 0.04390896281303069589885533... 10 1025 0.04390896330786777379414334... 11 2049 0.04390896335161701542401577... 12 4097 0.04390896335102793828470954... 13 8193 0.04390896335127457473079624... 14 16385 0.04390896335131185998890588... 15 32769 0.04390896335130880417881285... 16 65541 0.04390896335130852088789156... 17 131073 0.04390896335130852182995244... 18 262145 0.04390896335130852702777625... 19 524289 0.04390896335130852688659318... 20 1048577 0.04390896335130852691520992... 21 2097153 0.04390896335130852691785136... 22 4194305 0.04390896335130852691786707... 23 8388609 0.04390896335130852691787563... 24 16777217 0.04390896335130852691787421... 25 33554433 0.04390896335130852691787435... ... Extending this several steps farther, it becomes apparent that the limit is 0.04390896335130852691787434869606... (End)
Crossrefs
Programs
-
Sage
compositessq = (i for i in NN if i>3 and not i.is_prime()) s = RLF(0); s RealField(110)(s) for i in range(0, 50000000): s += (-1)^i / next(compositessq)^2 print(s)
Formula
Extensions
a(9)-a(15) from Robert Price, Nov 14 2016
Comments