A278389 Decimal expansion of Sum_{k>=1} (-1)^(k+1)/(k*prime(k)).
3, 7, 4, 4, 8, 5, 1, 8, 7, 9, 7, 4, 7, 4, 6, 1, 6, 3, 2, 1, 7, 0, 9, 4, 0, 8, 6
Offset: 0
Examples
0.374485187974746163217094086...
Links
- Eric Weisstein's World of Mathematics, Prime Sums
Crossrefs
See the following for alternating sums of reciprocals of primes, composites, and related expressions: A078437 (primes), A242301 (primes^2), A242302 (primes^3), A242303 (primes^4), A242304 (primes^5), A269229 (composites), A275110 (composites excluding prime powers), A275712 (nonprimes), A276494 (composites^2).
Programs
-
Mathematica
RealDigits[N[-Sum[(-1)^k/(k*Prime[k]), {k, 1, 8*10^6}], 30]][[1]] (* G. C. Greubel, Nov 22 2016 *) s = 0; k = 1; p = 2; While[k =< 10^10, s = N[s - (-1)^k/(k*p), 48]; k++; p = NextPrime@p]; RealDigits[s, 10, 20] (* good for the first 27 digits *) (* Robert G. Wilson v, Mar 07 2019 *)
Formula
Sum_{k>=1} (-1)^(k+1)/(k*prime(k)) = 1/(1*2) - 1/(2*3) + 1/(3*5) - 1/(4*7) + 1/(5*11) - ... .
Extensions
Edited and a(21)-a(26) from Robert G. Wilson v, Mar 07 2019
Comments