cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276560 Expansion of Sum_{k>=1} prime(k)*x^prime(k)/(1 - x^prime(k)) * Product_{k>=1} 1/(1 - x^prime(k)).

Original entry on oeis.org

0, 2, 3, 4, 10, 12, 21, 24, 36, 50, 66, 84, 117, 140, 180, 224, 289, 342, 437, 520, 630, 770, 920, 1104, 1300, 1560, 1809, 2156, 2523, 2940, 3441, 3968, 4620, 5338, 6125, 7092, 8103, 9272, 10608, 12080, 13776, 15624, 17759, 20064, 22680, 25622, 28858, 32496, 36456, 40950, 45849, 51324, 57399, 64044, 71390
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 10 2017

Keywords

Comments

Sum of all parts of all partitions of n into prime parts.
Convolution of the sequences A000607 and A008472.

Examples

			a(6) = 12 because we have [3, 3], [2, 2, 2] and 2*6 = 12.
		

Crossrefs

Programs

  • Mathematica
    nmax = 55; Rest[CoefficientList[Series[Sum[Prime[k] x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}] Product[1/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 55; Rest[CoefficientList[Series[x D[Product[1/(1 - x^Prime[k]), {k, 1, nmax}], x], {x, 0, nmax}], x]]
    Table[Total@Flatten[IntegerPartitions[n,All,Prime@Range@PrimePi@n]],{n,52}] (* Giorgos Kalogeropoulos, Sep 12 2021 *)

Formula

G.f.: Sum_{k>=1} prime(k)*x^prime(k)/(1 - x^prime(k)) * Product_{k>=1} 1/(1 - x^prime(k)).
G.f.: x*f'(x), where f(x) = Product_{k>=1} 1/(1 - x^prime(k)).
a(n) = n*A000607(n).
a(n) ~ n*exp(2*Pi*sqrt(n/log(n))/sqrt(3)).