cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A277888 Primes in A276573, the infinite trunk of least squares beanstalk.

Original entry on oeis.org

3, 11, 43, 53, 59, 67, 83, 131, 139, 149, 173, 179, 227, 233, 251, 277, 283, 331, 347, 349, 419, 431, 491, 547, 557, 563, 571, 587, 617, 643, 659, 661, 683, 701, 733, 739, 743, 757, 821, 827, 907, 941, 947, 971, 1013, 1019, 1051, 1061, 1091, 1109, 1117, 1123, 1129, 1163, 1187, 1213, 1229, 1259, 1283, 1291, 1301, 1307, 1327, 1373, 1427, 1429, 1451, 1453
Offset: 1

Views

Author

Antti Karttunen, Nov 13 2016

Keywords

Crossrefs

Intersection of A000040 and A276573.

Programs

Formula

a(n) = A276573(A277887(n)).

A277015 Numbers whose squares are present in A276573 (the infinite trunk of least squares beanstalk).

Original entry on oeis.org

0, 4, 8, 12, 16, 19, 20, 24, 36, 40, 45, 48, 56, 60, 68, 72, 80, 83, 84, 92, 96, 104, 109, 112, 120, 124, 132, 136, 140, 144, 147, 148, 156, 160, 164, 168, 173, 176, 180, 192, 204, 208, 211, 216, 220, 224, 228, 232, 237, 240, 252, 264, 272, 275, 276, 280, 284
Offset: 0

Views

Author

Antti Karttunen, Oct 03 2016

Keywords

Comments

Indexing starts from zero because a(0)=0 is a special case in this sequence.

Crossrefs

Cf. A000196, A002828, A276573, A277014, A277016 (the corresponding squares), A277025 (multiples of four present / 4).
Positions of squares in A277023, zeros in A277024.

Programs

Formula

A276575 After a(0)=0, the first differences of A276573.

Original entry on oeis.org

0, 3, 3, 2, 3, 4, 1, 2, 3, 3, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 4, 1, 3, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 4, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 4, 1, 3, 2, 3, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 4, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 2, 3, 3, 4, 2, 3, 4, 3, 2, 3, 3, 4, 1, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 2, 3
Offset: 0

Views

Author

Antti Karttunen, Sep 07 2016

Keywords

Crossrefs

Formula

a(n) = A002828(A276573(n)).
a(0) = 0; for n >= 1, a(n) = A276573(n) - A276573(n-1).
Other identities.
For all n >= 1, a(A260731(A132592(n))) = a(A260733(A001541(n))) = 2. [This is implied by the fact observed in the Polster video. Of course 2's occur at other points too.]

A277016 Squares present in A276573 (the infinite trunk of least squares beanstalk).

Original entry on oeis.org

0, 16, 64, 144, 256, 361, 400, 576, 1296, 1600, 2025, 2304, 3136, 3600, 4624, 5184, 6400, 6889, 7056, 8464, 9216, 10816, 11881, 12544, 14400, 15376, 17424, 18496, 19600, 20736, 21609, 21904, 24336, 25600, 26896, 28224, 29929, 30976, 32400, 36864, 41616, 43264, 44521, 46656, 48400, 50176, 51984, 53824, 56169, 57600, 63504, 69696, 73984, 75625, 76176, 78400, 80656
Offset: 0

Views

Author

Antti Karttunen, Oct 03 2016

Keywords

Comments

Indexing starts from zero because a(0)=0 is a special case in this sequence.

Crossrefs

Cf. A276573, A277014, A277015 (square roots of these numbers), A277025.

Programs

Formula

a(n) = A276573(A277014(n)).

A277023 a(n) = A276573(A260732(n)); For n >= 1, a(n) = the next larger term right after each (n^2)-1 in the infinite trunk of least squares beanstalk.

Original entry on oeis.org

0, 3, 6, 11, 16, 27, 38, 51, 64, 83, 102, 123, 144, 171, 198, 227, 256, 291, 326, 361, 400, 444, 486, 531, 576, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1296, 1371, 1446, 1523, 1600, 1683, 1767, 1851, 1938, 2025, 2118, 2211, 2304, 2403, 2502, 2603, 2706, 2811, 2918, 3027, 3136, 3251, 3366, 3483, 3600, 3723, 3846
Offset: 0

Views

Author

Antti Karttunen, Oct 03 2016

Keywords

Crossrefs

Cf. A277015 (the positions of squares in this sequence), A277024, A277025 A277026.

Programs

Formula

a(n) = A276573(A260732(n)).

A278487 Primes p such that p+1 is in A276573, the infinite trunk of least squares beanstalk.

Original entry on oeis.org

2, 5, 7, 17, 23, 29, 31, 37, 47, 71, 79, 89, 101, 107, 127, 151, 157, 167, 191, 197, 199, 223, 239, 263, 269, 271, 293, 311, 317, 337, 359, 367, 383, 389, 421, 433, 439, 443, 449, 461, 463, 479, 487, 503, 509, 521, 541, 593, 599, 607, 619, 631, 647, 653, 677, 709, 719, 727, 751, 773, 797, 809, 823, 839, 857, 863, 881, 887, 911, 919
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2016

Keywords

Comments

These seem to be substantially more common than A277888, even though odd terms are slightly more common in A276573 than the even terms. See also comments in A277487.

Crossrefs

One less than A278486.
No common terms with A277888, some common terms with A278494.
Cf. A277486 (gives the count of these primes in each range [n^2, (n+1)^2]).

Programs

Formula

a(n) = A278486(n) - 1 = A276573(A278485(n)) - 1.

A278497 a(n) = Least number with the prime signature of A276573(n).

Original entry on oeis.org

2, 6, 8, 2, 6, 16, 12, 6, 24, 8, 30, 32, 6, 6, 24, 2, 12, 48, 6, 2, 24, 2, 12, 64, 2, 30, 72, 12, 30, 48, 2, 6, 24, 60, 6, 96, 12, 30, 30, 72, 48, 6, 12, 120, 6, 60, 128, 2, 6, 24, 2, 6, 144, 12, 2, 24, 6, 6, 96, 48, 30, 120, 12, 2, 48, 2, 6, 30, 24, 192, 30, 60, 72, 6, 12, 210, 6, 216, 6, 6, 96, 2, 30, 2, 12, 240, 32, 12, 24, 2, 30, 256, 6, 12, 120, 6, 120
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2016

Keywords

Crossrefs

Cf. A277014 (gives the indices of squares).
Cf. also A278232.

Programs

Formula

a(n) = A046523(A276573(n)).
For all n >= 1, a(A260733(1+n)) = A278160(n).

A278498 a(n) = A065338(A276573(n)).

Original entry on oeis.org

3, 6, 8, 3, 3, 16, 18, 9, 24, 27, 6, 32, 3, 6, 8, 3, 9, 48, 3, 1, 24, 3, 27, 64, 3, 6, 72, 3, 6, 16, 3, 1, 24, 18, 9, 96, 27, 6, 9, 108, 48, 3, 9, 24, 3, 54, 128, 3, 6, 8, 3, 3, 144, 27, 1, 24, 3, 6, 32, 162, 9, 72, 27, 1, 48, 3, 3, 18, 81, 192, 3, 54, 8, 3, 27, 18, 9, 216, 3, 1, 96, 3, 27, 1, 12, 48, 243, 9, 24, 3, 3, 256, 3, 9, 72, 3, 54, 16, 3, 1, 24, 3, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A065338(A276573(n)).

A278499 a(n) = A276573(n) modulo 4.

Original entry on oeis.org

0, 3, 2, 0, 3, 3, 0, 2, 1, 0, 3, 2, 0, 3, 2, 0, 3, 1, 0, 3, 1, 0, 3, 3, 0, 3, 2, 0, 3, 2, 0, 3, 1, 0, 2, 1, 0, 3, 2, 1, 0, 0, 3, 1, 0, 3, 2, 0, 3, 2, 0, 3, 3, 0, 3, 1, 0, 3, 2, 0, 2, 1, 0, 3, 1, 0, 3, 3, 2, 1, 0, 3, 2, 0, 3, 3, 2, 1, 0, 3, 1, 0, 3, 3, 1, 0, 0, 3, 1, 0, 3, 3, 0, 3, 1, 0, 3, 2, 0, 3, 1, 0, 3, 2, 0, 3, 2, 0, 2, 1, 0, 2, 1, 0, 3, 2, 0, 3, 2, 0, 3
Offset: 0

Views

Author

Antti Karttunen, Nov 25 2016

Keywords

Comments

No subsequence 2, 3 will ever occur.

Crossrefs

Programs

Formula

a(n) = A010873(A276573(n)) = A276573(n) modulo 4.

A278521 a(n) = A276573(n) - A278517(n).

Original entry on oeis.org

0, 2, 2, 0, 2, 3, 0, 0, 1, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 0, 1, 2, 1, 2, 3, 2, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 1, 3, 2, 2, 2, 2, 2, 0, 1, 2, 2, 2, 2, 2, 0, 0, 2, 3, 1, 2, 3, 2, 1, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0
Offset: 0

Views

Author

Antti Karttunen, Nov 28 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A276573(n) - A278517(n).
Showing 1-10 of 39 results. Next