A276586 Square array A(row,col) = Sum_{k=0..row} binomial(row,k)*A002110(col+k), read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...
1, 2, 3, 6, 8, 11, 30, 36, 44, 55, 210, 240, 276, 320, 375, 2310, 2520, 2760, 3036, 3356, 3731, 30030, 32340, 34860, 37620, 40656, 44012, 47743, 510510, 540540, 572880, 607740, 645360, 686016, 730028, 777771, 9699690, 10210200, 10750740, 11323620, 11931360, 12576720, 13262736, 13992764, 14770535
Offset: 0
Examples
The top left corner of the array: 1, 2, 6, 30, 210, 2310, 30030 3, 8, 36, 240, 2520, 32340, 540540 11, 44, 276, 2760, 34860, 572880, 10750740 55, 320, 3036, 37620, 607740, 11323620, 253753500 375, 3356, 40656, 645360, 11931360, 265077120, 7422334920 3731, 44012, 686016, 12576720, 277008480, 7687412040, 235239464460
Links
Crossrefs
Programs
-
Mathematica
primorial[n_] := Product[Prime[k], {k, 1, n}]; A[n_, k_] := Sum[Binomial[n, j]*primorial[k+j], {j, 0, n}]; Table[A[n-k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 22 2017 *)
-
PARI
P(n)=prod(i=1, n, prime(i)); T(n, k) = sum(j=0, n, binomial(n, j)*P(k + j)); for(n=0, 10, for(k=0, n, print1(T(k, n - k),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
-
Scheme
(define (A276586 n) (A276586bi (A002262 n) (A025581 n))) (define (A276586bi row col) (A276085 (A066117bi (+ 1 row) (+ 1 col))))
Comments