A276588 Square array A(row,col) = Sum_{k=0..row} binomial(row,k)*(1+col+k)!, read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...
1, 2, 3, 6, 8, 11, 24, 30, 38, 49, 120, 144, 174, 212, 261, 720, 840, 984, 1158, 1370, 1631, 5040, 5760, 6600, 7584, 8742, 10112, 11743, 40320, 45360, 51120, 57720, 65304, 74046, 84158, 95901, 362880, 403200, 448560, 499680, 557400, 622704, 696750, 780908, 876809, 3628800, 3991680, 4394880, 4843440, 5343120, 5900520, 6523224, 7219974, 8000882, 8877691
Offset: 0
Examples
The top left corner of the array: 1, 2, 6, 24, 120, 720, 5040, 40320 3, 8, 30, 144, 840, 5760, 45360, 403200 11, 38, 174, 984, 6600, 51120, 448560, 4394880 49, 212, 1158, 7584, 57720, 499680, 4843440, 51932160 261, 1370, 8742, 65304, 557400, 5343120, 56775600, 661933440 1631, 10112, 74046, 622704, 5900520, 62118720, 718709040, 9059339520
Links
Crossrefs
Transpose: A276589.
Topmost row (row 0): A000142, Row 1: A001048 (without its initial 2), Row 2: A001344 (from a(1) = 11 onward), Row 3: A001345 (from a(1) = 49 onward), Row 4: A001346 (from a(1) = 261 onward), Row 5: A001347 (from a(1) = 1631 onward).
Leftmost column (column 0): A001339, Column 1: A001340, Columns 2-3: A001341 & A001342 (apparently).
Cf. A276075.
Programs
-
Mathematica
T[r_, c_]:=Sum[Binomial[r, k](1 + c + k)!, {k, 0, r}]; Table[T[c, r - c], {r, 0, 10}, {c, 0, r}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
-
PARI
T(r, c) = sum(k=0, r, binomial(r, k)*(1 + c + k)!); for(r=0, 10, for(c=0, r, print1(T(c, r - c),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
-
Python
from sympy import binomial, factorial def T(r, c): return sum([binomial(r, k) * factorial(1 + c + k) for k in range(r + 1)]) for r in range(11): print([T(c, r - c) for c in range(r + 1)]) # Indranil Ghosh, Apr 11 2017
-
Scheme
(define (A276588 n) (A276588bi (A002262 n) (A025581 n))) (define (A276588bi row col) (A276075 (A066117bi (+ 1 row) (+ 1 col)))) ;; Code for A066117bi given in A066117, and for A276075 under the respective entry.