A276589 Transpose of A276588.
1, 3, 2, 11, 8, 6, 49, 38, 30, 24, 261, 212, 174, 144, 120, 1631, 1370, 1158, 984, 840, 720, 11743, 10112, 8742, 7584, 6600, 5760, 5040, 95901, 84158, 74046, 65304, 57720, 51120, 45360, 40320, 876809, 780908, 696750, 622704, 557400, 499680, 448560, 403200, 362880, 8877691, 8000882, 7219974, 6523224, 5900520, 5343120, 4843440, 4394880, 3991680, 3628800
Offset: 0
Examples
The top left corner of the array: 1, 3, 11, 49, 261, 1631, 11743 2, 8, 38, 212, 1370, 10112, 84158 6, 30, 174, 1158, 8742, 74046, 696750 24, 144, 984, 7584, 65304, 622704, 6523224 120, 840, 6600, 57720, 557400, 5900520, 68019240 720, 5760, 51120, 499680, 5343120, 62118720, 780827760 5040, 45360, 448560, 4843440, 56775600, 718709040, 9778048560
Crossrefs
Programs
-
Mathematica
T[r_, c_]:=Sum[Binomial[r, k](1 + c + k)!, {k, 0, r}]; Table[T[r - c, c], {r, 0, 10}, {c, 0, r}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
-
PARI
T(r, c) = sum(k=0, r, binomial(r, k)*(1 + c + k)!); for(r=0, 10, for(c=0, r, print1(T(r - c, c),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
-
Python
from sympy import binomial, factorial def T(r, c): return sum([binomial(r, k) * factorial(1 + c + k) for k in range(r + 1)]) for r in range(11): print([T(r - c, c) for c in range(r + 1)]) # Indranil Ghosh, Apr 11 2017
-
Scheme
(define (A276589 n) (A276588bi (A025581 n) (A002262 n))) ;; Code for A276588bi given in A276588.
Comments