cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276589 Transpose of A276588.

Original entry on oeis.org

1, 3, 2, 11, 8, 6, 49, 38, 30, 24, 261, 212, 174, 144, 120, 1631, 1370, 1158, 984, 840, 720, 11743, 10112, 8742, 7584, 6600, 5760, 5040, 95901, 84158, 74046, 65304, 57720, 51120, 45360, 40320, 876809, 780908, 696750, 622704, 557400, 499680, 448560, 403200, 362880, 8877691, 8000882, 7219974, 6523224, 5900520, 5343120, 4843440, 4394880, 3991680, 3628800
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2016

Keywords

Comments

Rows give the successive first differences of A001339.

Examples

			The top left corner of the array:
     1,     3,     11,      49,      261,      1631,      11743
     2,     8,     38,     212,     1370,     10112,      84158
     6,    30,    174,    1158,     8742,     74046,     696750
    24,   144,    984,    7584,    65304,    622704,    6523224
   120,   840,   6600,   57720,   557400,   5900520,   68019240
   720,  5760,  51120,  499680,  5343120,  62118720,  780827760
  5040, 45360, 448560, 4843440, 56775600, 718709040, 9778048560
		

Crossrefs

Topmost row: A001339. For other rows and columns, see the information given in transpose A276588.
Cf. also A276587.

Programs

  • Mathematica
    T[r_, c_]:=Sum[Binomial[r, k](1 + c + k)!, {k, 0, r}]; Table[T[r - c, c], {r, 0, 10}, {c, 0, r}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
  • PARI
    T(r, c) = sum(k=0, r, binomial(r, k)*(1 + c + k)!);
    for(r=0, 10, for(c=0, r, print1(T(r - c, c),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
    
  • Python
    from sympy import binomial, factorial
    def T(r, c): return sum([binomial(r, k) * factorial(1 + c + k) for k in range(r + 1)])
    for r in range(11): print([T(r - c, c) for c in range(r + 1)]) # Indranil Ghosh, Apr 11 2017
  • Scheme
    (define (A276589 n) (A276588bi (A025581 n) (A002262 n))) ;; Code for A276588bi given in A276588.