cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276595 Denominator of the rational part of the sum of reciprocals of even powers of even numbers, i.e., Sum_{k>=1} 1/(2*k)^(2*n).

Original entry on oeis.org

24, 1440, 60480, 2419200, 95800320, 2615348736000, 149448499200, 21341245685760000, 10218188434341888000, 1605715325396582400000, 28202200078783610880000, 3387648273463487338905600000, 372269041039943663616000000, 75786531374911731038945280000000
Offset: 1

Views

Author

Martin Renner, Sep 07 2016

Keywords

Comments

Denominator of Bernoulli(2*n)/(2*(2*n)!). - Robert Israel, Sep 18 2016

Crossrefs

Programs

  • Maple
    seq(denom(sum(1/(2*k)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..24);
    seq(denom(bernoulli(2*n)/2/(2*n)!),n=1..24); # Robert Israel, Sep 18 2016
  • Mathematica
    Table[Denominator[Zeta[2*n]/(2*Pi)^(2*n)], {n, 1, 30}] (* Terry D. Grant, Jun 19 2018 *)
  • PARI
    a(n) = denominator(bernfrac(2*n)/(2*(2*n)!)); \\ Michel Marcus, Jul 05 2018

Formula

A276592(n)/A276593(n) + A276594(n)/a(n) = A046988(n)/A002432(n).
Zeta(2n) = (-1)^(n-1)*(A276594(n)/a(n))*((2*Pi)^(2n)), according to Euler. - Terry D. Grant, Jun 19 2018