A276648 Number of points of norm <= n in the body-centered cubic lattice with the lattice parameter equal to 2/sqrt(3).
1, 9, 59, 169, 339, 701, 1243, 1893, 2741, 3943, 5577, 7343, 9409, 12039, 15065, 18421, 22227, 26717, 31879, 37461, 43655, 50557, 58071, 66227, 75121, 85083, 95801, 107227, 119541, 133019, 147271, 161901, 178127, 195481, 214143
Offset: 0
Keywords
Examples
The origin has norm 0, thus a(0)=1. The distance to the 8 vertices of the cube from the origin is 1, because the edge of the cube is 2/sqrt(3). Thus a(1)=9.
Links
- Yuriy Sibirmovsky, Table of n, a(n) for n = 0..50
- N. G. Khlebtsov, T-matrix method in plasmonics: An overview, J. Quantitative Spectroscopy & Radiative Transfer 123 (2013) 184-217.
Crossrefs
Cf. A276450.
Programs
-
Mathematica
DecM[A_]:=A[[1]]^2+A[[2]]^2+A[[3]]^2; Do[N1=0;N2=0; Do[A={l,k,j}; B={l+1/2,k+1/2,j+1/2}; If[DecM[A]<=3/4r^2,N1+=1]; If[DecM[B]<=3/4r^2,N2+=1],{l,-r-1,r+1},{k,-r-1,r+1},{j,-r-1,r+1}]; Print[r," ",N1+N2],{r,0,20}]
Comments